DOI QR코드

DOI QR Code

The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact

P/M Fecralloy 성형체의 고온산화 및 전기저항 안정성에 미치는 SiO2 첨가 효과

  • Park, Jin-Woo (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Ok, Jin-Uk (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Jung, Woo-young (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Park, Dong-kyu (LINC, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University)
  • 박진우 (경상대학교 나노.신소재 공학부) ;
  • 옥진욱 (경상대학교 나노.신소재 공학부) ;
  • 정우영 (경상대학교 나노.신소재 공학부) ;
  • 박동규 (경상대학교 링크 사업단) ;
  • 안인섭 (경상대학교 나노.신소재 공학부)
  • Received : 2017.06.20
  • Accepted : 2017.08.09
  • Published : 2017.08.28

Abstract

A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at $950^{\circ}C$ for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and $Al_2O_3$ upon the addition of Si oxide. Si oxides promote the formation of $Al_2O_3$ and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Keywords

References

  1. A. Bautista, F. Velasco and J. Abenojar: Corros. Sci., 45 (2002) 1343.
  2. F. H. Stott, G. C. Wood and J. Stringer: Oxid. Met., 44 (1995) 113. https://doi.org/10.1007/BF01046725
  3. W. Howard, J. Pickering: J. Electrochem. Soc., 119 (1972) 1309.
  4. A. Rahmel and M. Schutz: Oxid. Met., 38 (1992) 255. https://doi.org/10.1007/BF00666914
  5. T. Takalo, N. Suutlal and T. Moisio: Metall. Trans. A, 10 (1979) 1173. https://doi.org/10.1007/BF02811663
  6. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein: Metall. Trans. A, 17 (1986) 923. https://doi.org/10.1007/BF02661258
  7. S. J. Han: M. S. Thesis, Influence of Y element on the heat resistance of the Fe-Cr-Al alloy, Inha University (2015) 26.
  8. J. H. Hong: M.S. Thesis, The High-Temperature Oxidation Behavior of Stainless Steel by Powder Metallurgy (2015) 26.
  9. P. Y. Hou and J. Stringer: Oxid. Met., 29 (1992) 323.
  10. G. H. Meier and Birks: Introduction to High Temperature Oxidation of Metals, Edward Amold, (1983) 118.
  11. A. V. C. Sobral, M. P. Hierro, F. J. Prez, W. Ristow Jr. and C. V. Franco: Mater. Corros., 51 (2000) 791. https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  12. I. S. Lee: Korean. J. Met. Mater., 47 (2009) 716.
  13. F. H. Stott and F. I. Wei: Oxide. Met., 31 (1989) 369. https://doi.org/10.1007/BF00666463
  14. J. Stringer, B. A. Wilcox and R. I. Jaffee: Oxide Met., 5 (1972) 42.
  15. J. W. Park, B. H. Ko, W. Y. Jung, D. K. Park and I. S. Ahn: J. Korean Powder Metall. Inst., 23 (2016) 430.
  16. J. P. Lee, J. H. Hong, D. K. Park and I. S. Ahn: J. Korean Powder Metall. Inst., 22 (2016) 275.