DOI QR코드

DOI QR Code

폐수 내 인 흡착 제거를 위한 제강슬래그와 활성탄 비교

Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption

  • Lee, Seung-Han (Department of Environmental Engineering, Kangwon National University) ;
  • Kim, Chang-Kyu (Department of Environmental Engineering, Kangwon National University) ;
  • Park, Jung-Geun (Department of Environmental Engineering, Kangwon National University) ;
  • Choi, Dong-Kwang (Department of Environmental Engineering, Kangwon National University) ;
  • Ahn, Johng-Hwa (Department of Environmental Engineering, Kangwon National University)
  • 투고 : 2016.02.27
  • 심사 : 2017.03.24
  • 발행 : 2017.05.31

초록

본 연구에서는 제강슬래그와 활성탄의 수중의 인 제거 효율을 비교하였다. 제강슬래그는 0.5~2.0 g/200 mL, 활성탄은 3.0~6.0 g/200 mL를 주입하여 흡착실험을 진행하였다. 제강슬래그의 양에 따른 제거 효율은 60분의 실험 결과 47~99%, 활성탄은 240분의 실험 결과 81~98%를 보였다. 흡착등온식을 적용하였을 때 Langmuir식에 더 적합하였으며 제강슬래그와 활성탄의 흡착능력을 비교하였을 때, 이론적 최대흡착량($Q_0$)은 제강슬래그에서 91 mg/g, 활성탄에서 27 mg/g으로 나타났다. 또한 반응속도는 유사 2차식을 따르며 속도상수($k_2$)는 제강슬래그에서 0.023~0.136 g/mg.min, 활성탄에서 0.025~0.122 g/mg.min으로 나타났고, 평형에서의 흡착량($q_e$)은 제강슬래그가 10.8~18.4 mg/g, 활성탄은 3.30~5.49 mg/g로 나타났다. pH의 경우 초기 pH 2에서 제강슬래그와 활성탄 모두 가장 높은 인 제거효율을 나타내었다. 따라서 폐수 내 인 제거 면에서 제강슬래그가 활성탄에 비해 우수하였다.

This study investigated the potential use of steel slag (SS) (0.5~2.0 g/200 mL) for the removal of phosphate from wastewater compared with activated carbon (AC) (3.0~6.0 g/200 mL). The adsorption equilibrium data were best represented by Langmuir isotherm and its calculated maximum adsorption capacity was 91 mg/g for SS, 27 mg/g for AC. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was $0.0232{\sim}0.1357g/mg{\cdot}min$ for SS, $0.0247{\sim}0.1221g/mg{\cdot}min$ for AC. The overall uptake for the SS and AC was maximum at pH 2. Therefore, it can be concluded that steel slag could play an effective role in reducing phosphate concentration compared with activated carbon.

키워드

참고문헌

  1. Song, M. Y., Jeon, M. S., Lee, H. D. and Jeong, B. S., "A study on the traveling route and control method of eutrophication sources in Han river basin," Gyeonggi Research Institute(2015).
  2. Lee, S. H. and Jang, J. H., "Preliminary study on the development of phosphorous removal process by converter and furnace slags," J. Korean Soc. Water Wastewater, 18(2), 137-144(2004).
  3. Kim, H. Y. and Kim, D. S., "The adsorption treatment features of wastewater containing alizarin red S dye employing granular activated carbon as adsorbent," J. Korean Soc. Water Sci. Technol., 22(5), 119-130(2014).
  4. Martin, M. J., Artola, A., Balaguer, M. D. and Rigola, M., "Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions," Chem. Eng. J., 94, 231-239(2003). https://doi.org/10.1016/S1385-8947(03)00054-8
  5. Park, J. H., Kim, J. H., Jung, J., Jun, S. J. and Park, H. B., "The application plans of slag to prevent non-point source pollutants flowing into the retention pond," J. Wetlands Res., 12(2), 67-73(2010).
  6. Statistics Korea Home Page, http://kostat.go.kr(2014).
  7. APHA. Standard method for the examination of water & wastewater, 22nd ed, American Public Health Association, Washington D. C., USA(2012).
  8. Xiong, J., Hea, Z., Mahmooda, Q., Liu, D., Yang, X. and Islam, E., "Phosphate removal from solution using steel slag through magnetic separation," J. Hazard. Mater., 152, 211-215(2008). https://doi.org/10.1016/j.jhazmat.2007.06.103
  9. Lee, S. H. and Hwang, J. J., "Phosphate removal efficiency and the removal rate constant by particle sizes of converter slag and conditions of the wastewater," J. Korean Soc. Water Wastewater, 26(6), 841-849(2012). https://doi.org/10.11001/jksww.2012.26.6.841
  10. Ragheb, S. M., "Phosphate removal from aqueous solution using slag and fly ash," HBRC J., 9(3), 270-275(2013). https://doi.org/10.1016/j.hbrcj.2013.08.005
  11. Na, C. K., Han, M. Y. and Park, H. J., "Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(1)," J. Korean Soc. Environ. Eng., 33(8), 606-616(2011). https://doi.org/10.4491/KSEE.2011.33.8.606
  12. Langmuir, I., "The adsorption of gases on plane surface of glass, mica and platinum," J. Am. Chem. Soc., 40, 1361-1403(1918). https://doi.org/10.1021/ja02242a004
  13. Ho, Y. S. and Mckay, G., "Pseudo-second order model for sorption processes," Process Biochem., 34, 451-465(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  14. Simonin, J. P., "On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics," Chem. Eng. J., 300, 254-263(2016). https://doi.org/10.1016/j.cej.2016.04.079
  15. Xue, Y., Houa, H. and Zhu, S., "Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag," J. Hazard. Mater., 162, 973-980(2009). https://doi.org/10.1016/j.jhazmat.2008.05.131
  16. Kim, E. Ho., Yim, S. B., Jung, H. C. amd Lee, E. J., "Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material," J. Hazard. Mater., B136, 690-697(2006).

피인용 문헌

  1. Removal of both cation and anion pollutant from solution using hydrogel chitosan bead vol.32, pp.3, 2018, https://doi.org/10.11001/jksww.2018.32.3.253
  2. Adsorption Characteristics of Zinc Ion in Synthetic Wastewater by Carbonaceous Material Prepared from Oriental Cherry vol.35, pp.3, 2018, https://doi.org/10.9786/kswm.2018.35.3.236