참고문헌
- G. A. Rodan and T. J. Martin, "Therapeutic approaches to bone diseases," Science 289, 1508-1514 (2000). https://doi.org/10.1126/science.289.5484.1508
- W. J. Boyle, W. S. Simonet, and D. L. Lacey, "Osteoclast differentiation and activation," Nature 423, 337-342 (2003). https://doi.org/10.1038/nature01658
- T. Wada, T. Nakashima, N. Hiroshi, and J. M. Penninger, "RANKL-RANK signaling in osteoclastogenesis and bone disease," Trends. Mol. Med. 12, 17-25 (2006). https://doi.org/10.1016/j.molmed.2005.11.007
- G. D. Roodman, K. J. Ibbotson, B. R. MacKonald, T. J. Kuehl, and G. R. Mundy, "1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow," Proc. Natl. Acad. Sci. USA. 82, 8213-8217 (1985). https://doi.org/10.1073/pnas.82.23.8213
- F. Arai, T. Miyamoto, O. Ohneda, T. Inada, T. Sudo, K. Brasel, T. Miyata, D. M. Anderson, and T. Suda, "Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors," J. Exp. Med. 190, 1741-1754 (1999). https://doi.org/10.1084/jem.190.12.1741
- S. L. Teitelbaum, "Bone resorption by osteoclasts," Science 289, 1504-1508 (2000). https://doi.org/10.1126/science.289.5484.1504
- B. R. Wong, R. Josien, and Y. Choi, "TRANCE is a TNF family member that regulates dendritic cell and osteoclast function," J. Leukoc. Biol. 65, 715-724 (1999). https://doi.org/10.1002/jlb.65.6.715
- N. J. Panetta, D. M. Gupta, N. Quarto, and M. T. Longaker, "Mesenchymal cells for skeletal tissue engineering," Panminerva Medica. 51, 25-41 (2009).
- M. T. Cheng, H. W. Yang, T. H. Chen, and O. K. S. Lee, "Modulation of proliferation and differentiation of human anterior cruciate ligament-derived stem cells by different growth factors," Tissue Engineering Part A. 15, 3979-3989 (2009). https://doi.org/10.1089/ten.tea.2009.0172
- Y. R. V. Shih, C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee, "Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells," 24, 2391-2397 (2006). https://doi.org/10.1634/stemcells.2006-0253
- J. Alock and V. Sottile, "Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex," Cell Res. 19, 1324-1333 (2009). https://doi.org/10.1038/cr.2009.119
- J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, and Z. Huang, "Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection," J. Raman Spectrosc. 43, 497-502 (2012). https://doi.org/10.1002/jrs.3072
- M. M. Mariani, P. J. Day, and V. Deckert, "Applications of modern micro-Raman spectroscopy for cell analyses," Integr. Biol. 2, 94-101 (2010). https://doi.org/10.1039/b920572a
- S. Dochow, C. Kra, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, "Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments," Lab Chip. 11, 1484-1490 (2011). https://doi.org/10.1039/c0lc00612b
- W. A. El-Said, T. H. Kim, H. C. Kim, and J. W. Choi, "Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering," PLOS ONE 6, e15836 (2011). https://doi.org/10.1371/journal.pone.0015836
- S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, "Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light," Biosens. Bioelectron. 26, 3167-3174 (2011). https://doi.org/10.1016/j.bios.2010.12.020
- J. Lin, R. Chen, S. Feng, J. Pan, Y. Li, G. Chen, M. Cheng, Z. Huang, Y. Yu, and H. Zeng, "A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection," Nanomedicine 7, 655-663 (2011). https://doi.org/10.1016/j.nano.2011.01.012
- I. Notingher, J. Selvakumaran, and L. L. Hench, "New detection system for toxic agents based on continuous spectroscopic monitoring of living cells," Biosens. Bioelectron. 20, 780-789 (2004). https://doi.org/10.1016/j.bios.2004.04.008
- L. L. McManus, G. A. Burke, M. M. McCafferty, P. O'Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, "Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells," Analyst 136, 2471-2481 (2011). https://doi.org/10.1039/c1an15167c
- I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, "In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro," Anal. Chem. 76, 3185-3193 (2004). https://doi.org/10.1021/ac0498720
- H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. B. Turner, "Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy," Anal. Chem. 82, 5020-5027 (2010). https://doi.org/10.1021/ac902697q
- F. C. Pascut, T. G. Huey, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, "Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells," Biophys. J. 100, 251-259 (2011). https://doi.org/10.1016/j.bpj.2010.11.043
- S. O. Konorov, G. Schulze, J. M. Piret, R. F. B. Turner, and M. W. Blades, "Evidence of marked glycogen variations in the characteristic Raman signatures of human embryonic stem cells," J. Raman Spectrosc. 42, 1135-1141 (2011). https://doi.org/10.1002/jrs.2829
- P. S. Hung, Y. C. Kuo, H. G. Chen, H. H. K. Chiang, and O. K. S. Lee, "Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy," PLOS ONE 8, e65438 (2013). https://doi.org/10.1371/journal.pone.0065438
- M. Xu, D. Fujita, K. Onishi, and K. Miyazawa, "Improving accuracy of sample surface topography by atomic force microscopy," J. Nanosci. Nanotechnol. 9, 6003-6007 (2009). https://doi.org/10.1166/jnn.2009.1232
- G. J. Lee, S. Choi, J. Chon, S. Yoo, I. Cho, and H. K. Park, "Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM," J. Nanosci. Nanotechnol. 11, 773-777 (2011). https://doi.org/10.1166/jnn.2011.3275
- W. A. Lam, M. J. Rosenbluth, and D. A. Fletcher, "Chemotherapy exposure increases leukemia cell stiffness," Blood 109, 3505-3508 (2007). https://doi.org/10.1182/blood-2006-08-043570
- G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Phys. Rev. Lett. 56, 930-933 (1986). https://doi.org/10.1103/PhysRevLett.56.930
- S. S. Schaus and E. R. Henderson, "Cell viability and probecell membrane interactions of XR1 glial cells imaged by atomic force microscopy," Biophys. J. 73, 1205-1214 (1997). https://doi.org/10.1016/S0006-3495(97)78153-0
- J. K. Pijanka, K. Kumar, T. Dale, I. Yousef, G. Parkes, V. Untereiner, Y. Yang, P. Dumas, D. Collins, M. Manfait, G. D. Sockalingum, N. R. Forsyth, and J. Sule-Suso, "Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells," Analyst 135, 3126-3132 (2010). https://doi.org/10.1039/c0an00525h
- E. Gazi, J. Dwyer, N. P. Lockyer, J. Miyan, P. Gardner, C. Hart, M. Brown, and N. W. Clarke, "Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy," Biopolymers 77, 18-30 (2005). https://doi.org/10.1002/bip.20167
- A. D. Meade, F. M. Lyng, P. Knief, and H. J. Byme, "Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in-vitro cultured human keratinocytes," Anal. Bional. Chem. 387, 1717-1728 (2007). https://doi.org/10.1007/s00216-006-0876-5
- M. Q. Hu, J. Wang, J. Y. Cai, Y. Z. Wu, and X. P. Wang, "Analysis of sodium benzoate biotoxicity using atomic force microscope," Chin. J. Biotechnol. 24, 1428-1432 (2008). https://doi.org/10.1016/S1872-2075(08)60064-3
- J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. J. Baker, "Atomic force microscopy study of early morphological changes during apoptosis," Langmuir 21, 9280-9286 (2005). https://doi.org/10.1021/la051837g
- D. J. Taatjes, B. E. Sobel, and R. C. Budd, "Morphological and cytochemical determination of cell death by apoptosis," Histochem. Cell. Biol. 129, 33-43 (2008). https://doi.org/10.1007/s00418-007-0356-9
- Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, "Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency," Appl. Spectrosc. 64, 871-887 (2010). https://doi.org/10.1366/000370210792080966
- J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, "Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells," Biophys. J. 90, 648-656 (2006). https://doi.org/10.1529/biophysj.105.066761
- G. B. Jung, Y. J. Lee, G. H. Lee, and H. K. Park, "A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy," Opt. Express 4, 2673-2682 (2013). https://doi.org/10.1364/BOE.4.002673
-
H. M. Al-Qadin, M. Lin, M. A. Al-Holy, A. G. Cavinato, and B. A. Rasco, "Detection of sublethal thermal injury in Salmonella enterica serotype typhimurium and Listeria monocytogenes using Fourier transform infrared (FT-IR) spectroscopy (4000 to 600
$cm^{-1}$ )," J. Food. Sci. 73, M54-61 (2008). https://doi.org/10.1111/j.1750-3841.2007.00640.x - I. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells," J. Mol. Struct. 744-747, 179-185 (2005). https://doi.org/10.1016/j.molstruc.2004.12.046
- C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).