DOI QR코드

DOI QR Code

Numerical Simulation of Hybrid Polarization Singularity Configurations

  • Ye, Dong (Department of Optical Engineering, School of Electronic and Optical Engineering, Nanjing University of Science and Technology) ;
  • Peng, Xinyu (Department of Optical Engineering, School of Electronic and Optical Engineering, Nanjing University of Science and Technology) ;
  • Zhou, Muchun (Department of Optical Engineering, School of Electronic and Optical Engineering, Nanjing University of Science and Technology) ;
  • Song, Minmin (Shanghai Aerospace Control Technology Research Institute)
  • Received : 2017.05.24
  • Accepted : 2017.07.24
  • Published : 2017.08.25

Abstract

In this article, we proposed hybrid polarization singularity configurations, based on the superposition of two orthogonal circularly polarized components, one of which is a light beam with two optical vortices. The topological configurations are the hybridization of lowest-order polarization singularities, but are different from high-order polarization singularities. Our numerical simulation may provide a theoretical basis for expanding the variety of polarization singularity configuration.

Keywords

References

  1. J. F. Nye, "Lines of circular polarization in electromagnetic wave fields," Proc. R. Soc. Lond. A 389, 279-290 (1983). https://doi.org/10.1098/rspa.1983.0109
  2. J. V. Hajnal, "Singularities in the transverse fields of electromagnetic waves. I. Theory," Proc. R. Soc. Lond. A 414, 433-446 (1987). https://doi.org/10.1098/rspa.1987.0153
  3. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42, 219-276 (2001).
  4. M. R. Dennis, K. O'Holleran, and M. J. Padgett, "Singularity optics: optical vortices and polarization singularities," Prog. Opt. 53, 293-363 (2009).
  5. M. R. Dennis, "Polarization singularities in paraxial vector fields: morphology and statistics," Opt. Common. 213, 201-221 (2002). https://doi.org/10.1016/S0030-4018(02)02088-6
  6. I. Freund, "Polarization singularity indices in Gaussian laser beams," Opt. Common. 201, 251-270 (2002). https://doi.org/10.1016/S0030-4018(01)01725-4
  7. F. Flossmann, K. O'Holleran, M. R. Dennis, and M. J. Padgett, "Polarization singularities in 2D and 3D speckle fields," Phys. Rev. Lett. 100, 203902 (2008). https://doi.org/10.1103/PhysRevLett.100.203902
  8. I. Freund and D. A. Kessler, "Singularities in speckled speckle," Opt. Lett. 33, 479-481 (2008). https://doi.org/10.1364/OL.33.000479
  9. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, "Poincare-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light," Appl. Opt. 51, 2925-3934 (2012). https://doi.org/10.1364/AO.51.002925
  10. F. Cardano, E. Karimi, L. Marrucci, C. D. Lisio, and E. Santamato, "Generation and dynamics of optical beams with polarization singularities," Opt. Express. 21, 8815-8820 (2013). https://doi.org/10.1364/OE.21.008815
  11. S. Vyas, Y. Kozawa, and S. Sato, "Polarization singularities in superposition of vector beams," Opt. Express. 21, 8972-8986 (2013). https://doi.org/10.1364/OE.21.008972
  12. V. Kumar and N. K. Viswanthan, "Polarization singularities and fiber modal decomposition," Proc. SPIE 8637, 86371A (2013).
  13. E. J. Galvez, B. L. Rojec, and K. R. McCullough, "Imaging optical singularities: understanding the duality of C-points and optical vortices," Proc. SPIE 8637, 863706 (2013).
  14. E. J. Galvez and B. L. Rojec, "Generation of isolated asymmetric umbilics in light's polarization," Phys. Rev. A. 89, 031801 (2014). https://doi.org/10.1103/PhysRevA.89.031801
  15. E. J. Galvez, B. L. Rojec, and K. Beach, "Mapping of all polarization singularity C-point morphologies," Proc. SPIE 8999, 899901 (2014).
  16. V. Shvedov, P. Karpinski, Y. Sheng, X. Chen, W. Zhu, W. Krolikowski, and C. Hnatovsky, "Visualizing polarization singularities in Bessel-Poincare beams," Opt. Express. 23, 12444-12453 (2015). https://doi.org/10.1364/OE.23.012444
  17. B. Khajavi and E. J. Galvez, "Preparation of Poincaré beams with a same-path polarization/spatial-mode interferometer," Opt. Eng. 54, 111305 (2015). https://doi.org/10.1117/1.OE.54.11.111305
  18. N. A. Panov, V. A. Makarov, K. S. Grigoriev, M. S. Yatskevitch, and O. G. Kosareva, "Generation of polarization singularities in the self-focusing of an elliptically polarized laser beam in an isotropic Kerr medium," Phys. D. 332, 73-78 (2016). https://doi.org/10.1016/j.physd.2016.06.006
  19. E. Otte, C. Alpmann, and C. Denz, "Higher-order polarization singularities in tailored vector beams," J. Opt. 18, 074012 (2016). https://doi.org/10.1088/2040-8978/18/7/074012
  20. E. J. Galvez and B. Khajavi, "High-order disclinations in the polarization of light," Proc. SPIE 9764, 97640R-1 (2016).
  21. E. J. Galvez and B. Khajavi, "Monstar disclinations in the polarization of singular optical beams," J. Opt. Soc. Am. A. 34, 568-575 (2017). https://doi.org/10.1364/JOSAA.34.000568
  22. R. Yu, Y. Xin, Q. Zhao, Y. Chen, and Q. Song, "Array of polarization singularities in interference of three waves," J. Opt. Soc. Am. A. 30, 2556-2560 (2013). https://doi.org/10.1364/JOSAA.30.002556
  23. D. Ye, X. Peng, Q. Zhao, and Y. Chen, "Numerical generation of a polarization singularity array with modulated amplitude and phase," J. Opt. Soc. Am. A. 33, 1705-1709 (2016). https://doi.org/10.1364/JOSAA.33.001705
  24. S. K. Pal, Ruchi, and P. Senthilkumaran, "C-point and Vpoint singularity lattice formation and index sign conversion methods," Opt. Common. 393, 156-168 (2017). https://doi.org/10.1016/j.optcom.2017.02.048
  25. D. Rozas, C. T. Law, and G. A. Swartzlander, "Propagation dynamics of optical vortices," J. Opt. Soc. Am. B. 14, 3054-3065 (1997). https://doi.org/10.1364/JOSAB.14.003054
  26. I. Freund, N. Shvartsman, and V. Freilikher, "Optical dislocation networks in highly random media," Opt. Common. 101, 247-264 (1993). https://doi.org/10.1016/0030-4018(93)90375-F
  27. D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, "Shearograms of an optical phase singularity," Opt. Common. 281, 1315-1322 (2008). https://doi.org/10.1016/j.optcom.2007.11.006
  28. A. M. Beckley, T. G. Brown, and M. A. Alonso, "Full Poincare beams," Opt. Express. 18, 10777-10785 (2010). https://doi.org/10.1364/OE.18.010777
  29. Y. Jiang, K. Huang, and X. Lu, "Propagation dynamics of abruptly autofocusing Airy beams with optical vortices," Opt. Express 20, 18579-18584 (2012). https://doi.org/10.1364/OE.20.018579
  30. B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Dong, "Propagation of sharply autofocused ring Airy Gaussian vortex beams," Opt. Express 23, 19288-19298 (2015). https://doi.org/10.1364/OE.23.019288
  31. M. V. Vasnetsov, M. S. Sonkin, and V. A. Pas'ko, "Topological configurations of cross-coupled polarization singularities in a space-variant vector field," Opt. Common. 363 181-187 (2016). https://doi.org/10.1016/j.optcom.2015.11.019
  32. B. S. B. Ram, A. Sharma, and P. Senthilkumaran, "Diffraction of V-point singularities through triangular apertures," Opt. Express 25, 10270-10275 (2017). https://doi.org/10.1364/OE.25.010270