References
- Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Bououdina, M. (Editor) (2014), Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, IGI Global.
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill Book Co., New York, NY, USA, 394 p.
- Cristescu, N.D., Craciun, E.M. and Soos, E. (2003), Mechanics of Elastic Composites, CRC Press.
- Duc, N.D. and Thang, P.T. (2014), "Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments", Int. J. Mech. Sci., 81, 17-25. https://doi.org/10.1016/j.ijmecsci.2014.01.016
- Dung, V.D. and Chan, D.Q. (2017), "Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT", Compos. Struct., 159, 827-841. https://doi.org/10.1016/j.compstruct.2016.10.006
- Dung, V.D. and Hoa, K.L. (2013), "Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells", Compos. Part B: Eng., 51, 300-309. https://doi.org/10.1016/j.compositesb.2013.03.030
- Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society of London, August, Vol. 241, No. 1226, pp. 376-396.
- Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2016), "Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408.
- Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nano-composites", Compos. Part A: Appl. Sci. Manuf., 36(11), 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Formica, G. and Lacarbonara, W. (2017), "Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites", Int. J. Plastic., 88, 204-217. https://doi.org/10.1016/j.ijplas.2016.10.012
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Garcia-Macias, E., Rodriguez-Tembleque, L., Castro-Triguero, R. and Saez, A. (2017), "Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear", Compos. Part B: Eng., 108, 243-256. https://doi.org/10.1016/j.compositesb.2016.10.002
- Gkikas, G., Barkoula, N.M. and Paipetis, A.S. (2012), "Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy", Compos. Part B: Eng., 43(6), 2697-2705. https://doi.org/10.1016/j.compositesb.2012.01.070
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Computat., 218(17), 8715-8735. https://doi.org/10.1016/j.amc.2012.01.080
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes", Int. J. Mech. Sci., 108, 157-165.
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
- Lim, C.W., Ma, Y.F., Kitipornchai, S., Wang, C.M. and Yuen, R.K. (2003), "Buckling of vertical cylindrical shells under combined end pressure and body force", J. Eng. Mech., 129(8), 876-884. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(876)
- Low, I.M. (Editor) (2014), Advances in Ceramic Matrix Composites, Woodhead Publishing.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Meguid, S.A. and Sun, Y. (2004), "On the tensile and shear strength of nano-reinforced composite interfaces", Mater. Des., 25(4), 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
- Mehrabadi, S.J. and Sobhani Aragh, B. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
- Mo, C.B., Cha, S.I., Kim, K.T., Lee, K.H. and Hong, S.H. (2005), "Fabrication of carbon nanotube reinforced alumina matrix nano-composite by sol-gel process", Mater. Sci. Eng.: A, 395(1), 124-128. https://doi.org/10.1016/j.msea.2004.12.031
- Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metal., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Najafizadeh, M.M., Hasani, A. and Khazaeinejad, P. (2009), "Mechanical stability of functionally graded stiffened cylindrical shells", Appl. Math. Model., 33(2), 1151-1157. https://doi.org/10.1016/j.apm.2008.01.009
- Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Method. Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002
- Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
- Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021
- Phung-Van, P., Ferreira, A.J., Nguyen-Xuan, H. and Wahab, M.A. (2017a), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012
- Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H. and Wahab, M.A. (2017b), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166, 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049
- Reddy, J.N. (1984), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Solids Struct., 20(9), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Reddy, J.N. and Chin, C.D. (1998), "Thermo-mechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Selim, B.A., Zhang, L.W. and Liew, K.M. (2015), "Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory", Compos. Struct., 156, 276-290.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011
- Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182
- Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
- Sobhaniaragh, B. (2014), "Vibration and thermal stress analyses of functionally graded materials", Ph.D. Dissertation; Ghent University, Belgium.
- Sobhani Aragh, B., Barati, A.N. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B: Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
- Sobhani Aragh, B., Farahani, E.B. and Barati, A.N. (2013), "Natural frequency analysis of continuously graded carbon nanotube-reinforced cylindrical shells based on third-order shear deformation theory", Math. Mech. Solids, 18(3), 264-284. https://doi.org/10.1177/1081286512438794
- Talo, M., Krause, B., Pionteck, J., Lanzara, G. and Lacarbonara, W. (2016), "An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites", Compos. Part B: Eng., 115, 70-78.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Tran, L.V., Phung-Van, P., Lee, J., Wahab, M.A. and Nguyen-Xuan, H. (2016), "Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates", Compos. Struct., 140, 655-667. https://doi.org/10.1016/j.compstruct.2016.01.001
- Wang, C.Y. and Zhang, L.C. (2008), "A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes", Nanotechnology, 19(7), 075705. https://doi.org/10.1088/0957-4484/19/7/075705
- Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025
- Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations", Eng. Anal. Boundary Elem., 58, 7-17. https://doi.org/10.1016/j.enganabound.2015.03.004
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010