References
- Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., Int. J., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659
- Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Chakraverty, S., Jindal, R. and Agarwal, V.K. (2007), "Effect of nonhomogeneity on natural frequencies of vibration of elliptic plates", Meccanica, 42(6), 585-599. https://doi.org/10.1007/s11012-007-9077-3
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
- Endo, M., Hayashi, T., Kim, Y.A., Terrones, M. and Dresselhaus, M.S. (2004), "Applications of carbon nanotubes in the twentyfirst century", Phil. Trans. R. Soc. Lond. A, 362(1823), 2223-2238. https://doi.org/10.1098/rsta.2004.1437
- Heshmati, M. and Yas, M.H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27(11), 3403-3408. https://doi.org/10.1007/s12206-013-0862-8
- Hosseini-Hashemi, Rokni Damavandi Taher, S.H. and Akhavan, H. (2010), "Vibration analysis of radially FGM sectorial plates of variable thickness on elastic foundations", Compos. Struct., 92(7), 1734-1743. https://doi.org/10.1016/j.compstruct.2009.12.016
- Hosseini-Hashemi, S., Es'haghi, M. and Karimi, M. (2010), "Closed-form vibration analysis of thick annular functionally graded plates with integrated piezoelectric layers", Int. J. Mech. Sci., 52(3), 410-428. https://doi.org/10.1016/j.ijmecsci.2009.10.016
- Iijima, S. (1991), "Helical microtubes of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Kamarian, S., Yas, M.H. and Pourasghar, A. (2013), "Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations", J. Sandw. Struct. Mater., 15(3), 292-308. https://doi.org/10.1177/1099636213487363
- Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 1-31.
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes", Int. J. Mech. Sci., 108(1), 157-165.
- Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Koizumi, M. (1993), "The concept of FGM, ceramic transactions", Funct. Gradient. Mater., 34, 3-10.
- Li, Q., Iu, V. and Kou, K. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018
- Marin, M. (2010), "A domain of influence theorem for microstretch elastic materials", Nonlinear Anal. Real World Appl., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005
- Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518. https://doi.org/10.1177/107754639800400501
- Malekzadeh, P., Golbahar Haghighi, M.R. and Atashi, M.M. (2011), "Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment", Meccanica, 46(5) 893-913. https://doi.org/10.1007/s11012-010-9345-5
- Matsunaga, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech. ASCE, 126, 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27)
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory", J. Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Moniruzzaman, M. and Winey, K.I. (2006), "Polymer nanocomposites containing carbon nanotubes", Macromolecules, 39(16), 5194-5205. https://doi.org/10.1021/ma060733p
- Moradi-Dastjerdi, R., Pourasghar, A. and Foroutan, M. (2013), "The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method", Acta Mech., 224(11), 2817-2832. https://doi.org/10.1007/s00707-013-0897-z
- Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
- Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
- Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
- Salvetat, D. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: a fiber digest for beginners", Carbon, 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
- Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8-10) 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
- Shaffer, M.S.P. and Windle, A.H. (1999), "Fabrication and Characterization of Carbon Nanotube/Poly (vinyl alcohol) Composites", Adv. Mater. (Weinheim, Ger.), 11(11), 937-941. https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space, U.P.B. Sci. Bull., Series A-Appl. Math. Phys., 75(2), 121-132.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Zhang, C.L. (2010), 'Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates', Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shen, H.S. and Zhu, Z.H. (2010), "Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments", Comput. Mater Continua., 18(2), 155-182.
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites", J. Eng. Mater. Technol., 126(3) 250-257. https://doi.org/10.1115/1.1751182
- Shokrieh, M.M. and Rafiee, R. (2010a), "Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites", Compos. Struct., 92(10), 2415-2420. https://doi.org/10.1016/j.compstruct.2010.02.018
- Shokrieh, M.M. and Rafiee, R. (2010b), "Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber", Mech. Res. Commun., 37(2), 235-240. https://doi.org/10.1016/j.mechrescom.2009.12.002
- Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluid, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Stephan, C., Nguyen, T.P., Chapelle, M.L. and Lefrant, S. (2000), "Characterization of single-walled carbon nanotubes-PMMA composite", Synth. Met., 108(2), 139-149. https://doi.org/10.1016/S0379-6779(99)00259-3
- Tahouneh, V. (2014a), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., Int. J., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tahouneh, V. (2014b), "Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 50(6), 773-796. https://doi.org/10.12989/sem.2014.50.6.773
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., Int. J., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623
- Tahouneh, V. and Naei, M.H. (2014), "A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation", Meccanica, 49(1), 91-109. https://doi.org/10.1007/s11012-013-9776-x
- Tahouneh, V. and Naei, M.H. (2016), "Free vibration and vibrational displacements analysis of thick elastically supported laminated curved panels with power-law distribution functionally graded layers and finite length via 2D GDQ method", J. Sandw. Struct. Mater., 18(3), 263-293. https://doi.org/10.1177/1099636215600709
- Tahouneh, V. and Yas, M.H. (2012), "3-D free vibration analysis of thick functionally graded annular sector plates on Pasternak elastic foundation via 2-D differential quadrature method", Acta Mech., 223(9), 1879-1897. https://doi.org/10.1007/s00707-012-0648-6
- Tahouneh, V. and Yas, M.H. (2013), "Semi-analytical solution for three-dimensional vibration analysis of thick multidirectional functionally graded annular sector plates under various boundary conditions", J. Eng. Mech., 140(1), 31-46.
- Tahouneh, V., Yas, M.H., Tourang, H. and Kabirian, M. (2013), "Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their circular edges", Meccanica, 48(6), 1313-1336. https://doi.org/10.1007/s11012-012-9669-4
- Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Tornabene, F. and Viola, E. (2009), "Free vibration analysis of four-parameter functionally graded parabolic panels and shells of revolution", Eur. J. Mech. A/Solid, 28(5), 991-1013. https://doi.org/10.1016/j.euromechsol.2009.04.005
- Tornabene, F., Fantuzzi, N. and Ubertini, F. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 1-55.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Tsai, S.W., Hoa, C.V. and Gay, D. (2003), Composite Materials, Design and Applications, CRC Press, Boca Raton, CA, USA.
- Valter, B., Ram, M.K. and Nicolini, C. (2002), "Synthesis of multiwalled carbon nanotubes and poly (o-anisidine) nanocomposite material: Fabrication and characterization its langmuir-schaefer films", Langmuir, 18(5), 1535-1541. https://doi.org/10.1021/la0104673
- Vigolo, B., Penicaud, A.P., Couloun, C., Sauder, S., Pailler, R., Journet, C., Bernier, P. and Poulin, P. (2000), "Macroscopic fibers and ribbons of oriented carbon nanotubes", Science, 290(5495), 1331-1334. https://doi.org/10.1126/science.290.5495.1331
- Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B, 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wernik, J.M. and Meguid, S.A. (2011), "Multiscale modeling of the nonlinear response of nano-reinforced polymers", Acta. Mech., 217(1), 1-16. https://doi.org/10.1007/s00707-010-0377-7
- Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Yas, M.H. and Sobhani Aragh, B. (2010), "Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation", Int. J. Eng. Sci., 48(12), 1881-1895. https://doi.org/10.1016/j.ijengsci.2010.06.015
- Yas, M.H. and Tahouneh, V. (2012), "3-D free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta Mech., 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6
- Yokozeki, T., Iwahori, Y. and Ishiwata, S. (2007), "Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs)", Compos. Part A, 38(3), 917-924. https://doi.org/10.1016/j.compositesa.2006.07.005
- Zenkour, A. (2005a), "A comprehensive analysis of functionally graded sandwich plates, Part 1-Deflection and stresses", Int. J. Solids Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
- Zenkour, A. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Methods Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915
Cited by
- Vibrational characteristic of FG porous conical shells using Donnell's shell theory vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.249
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.295
- Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2017, https://doi.org/10.12989/scs.2020.37.6.711
- The effect of agglomeration and slightly weakened CNT-matrix interface on free vibration response of cylindrical nanocomposites vol.232, pp.6, 2021, https://doi.org/10.1007/s00707-020-02933-y