References
- Bayat, M. and Pakar, I. (2017), "Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., Int. J., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
- Bayat, M., Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of mechanical systems by means of Homotopy perturbation method", Kuwait J. Sci., 42(3), 64-85.
- Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Lett. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
- Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Current Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
- Ganji, D.D. and Sadighi, A. (2007), "Application of homotopyperturbation and variational iteration methods to nonlinear heat transfer and porous media equations", J. Computat. Appl. Math., 207(1), 24-36. https://doi.org/10.1016/j.cam.2006.07.030
- Ganji, D.D., Tari, H. and Bakhshi Jooybari, M. (2007), "Variational iteration method and homotopy perturbation method for nonlinear evolution equations", Comput. Math. Appl., 54(7-8), 1018-1027. https://doi.org/10.1016/j.camwa.2006.12.070
- Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2011), "Solution of nonlinear cubic-quintic duffing oscillators using He's energy balance method", J. Zhejiang Univ.-Sci. A, 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solitons Fract., 34, 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Current Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
- Kaya, M.O. and Demirbag, S.A. (2013), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos Solitons Fract., 42(4), 1967-197. https://doi.org/10.1016/j.chaos.2009.03.143
- Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
- Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of stringer shell: An analytical approach", Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng., 229(1), 44-51. https://doi.org/10.1177/0954408913509090
- Pakar, I., Bayat, M. and Bayat, M. (2016), "Approximate analytical solution of nonlinear systems using homotopy perturbation method", Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng., 230(1), 10-17. https://doi.org/10.1177/0954408914533104
- Pirbodaghi, T. and Hoseini, S. (2010), "Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity", J. Computat. Nonlinear Dyn., 5, 011006. https://doi.org/10.1115/1.4000315
- Rafei, M., Ganji, D.D., Daniali, H. and Pashaei, H. (2007), "The variational iteration method for nonlinear oscillators with discontinuities", J. Sound Vib., 305(4-5), 614-620. https://doi.org/10.1016/j.jsv.2007.04.020
- Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
- Sadighi, A. and Ganji, D.D. (2007), "Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods", Int. J. Nonlinear Sci. Numer. Simul., 8(3), 435-443. https://doi.org/10.1515/IJNSNS.2007.8.3.435
- Samaee, S.S., Yazdanpanah, O. and Ganji, D.D. (2015), "New approaches to identification of the Lagrange multiplier in the variational iteration method", J. Brazil. Soc. Mech. Sci. Eng., 37(3), 937-944. https://doi.org/10.1007/s40430-014-0214-3
- Shou, D.H. (2012), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459.
- Tari, H., Ganji, D.D. and Rostamian, M. (2007a), "Approximate solutions of K (2, 2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method", Int. J. Nonlinear, 8(2), 203-210.
- Tari, H., Ganji, D.D. and Babazadeh, H. (2007b), "The application of He's variational iteration method to nonlinear equations arising in heat transfer", Phys. Lett. A, 363(3), 213-217. https://doi.org/10.1016/j.physleta.2006.11.005
- Wazwaz, A.M. (2007), "The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
- Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos Solitons Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029