DOI QR코드

DOI QR Code

Analytical study on non-natural vibration equations

  • Bayat, Mahmoud (Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University)
  • Received : 2016.09.10
  • Accepted : 2017.05.25
  • Published : 2017.08.30

Abstract

In this paper, two powerful analytical methods called Variational Approach (VA) and Hamiltonian Approach (HA) are used to solve high nonlinear non-Natural vibration problems. The presented approaches are works well for the whole range of amplitude of the oscillator. The first iteration of the approaches leads us to high accurate solution. Numerical results are also presented by using Runge-Kutta's [RK] algorithm. The full comparison between the presented approaches and the numerical ones are shown in figures. The effects of important parameters on the response of nonlinear behavior of the systems are studied completely. Finally, the results show that the Variational Approach and Hamiltonian approach are strong enough to prepare easy analytical solutions.

Keywords

References

  1. Bayat, M. and Pakar, I. (2017), "Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., Int. J., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
  2. Bayat, M., Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of mechanical systems by means of Homotopy perturbation method", Kuwait J. Sci., 42(3), 64-85.
  3. Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Lett. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
  4. Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Current Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
  5. Ganji, D.D. and Sadighi, A. (2007), "Application of homotopyperturbation and variational iteration methods to nonlinear heat transfer and porous media equations", J. Computat. Appl. Math., 207(1), 24-36. https://doi.org/10.1016/j.cam.2006.07.030
  6. Ganji, D.D., Tari, H. and Bakhshi Jooybari, M. (2007), "Variational iteration method and homotopy perturbation method for nonlinear evolution equations", Comput. Math. Appl., 54(7-8), 1018-1027. https://doi.org/10.1016/j.camwa.2006.12.070
  7. Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2011), "Solution of nonlinear cubic-quintic duffing oscillators using He's energy balance method", J. Zhejiang Univ.-Sci. A, 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
  8. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  9. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solitons Fract., 34, 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  10. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  11. Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Current Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
  12. Kaya, M.O. and Demirbag, S.A. (2013), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos Solitons Fract., 42(4), 1967-197. https://doi.org/10.1016/j.chaos.2009.03.143
  13. Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
  14. Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of stringer shell: An analytical approach", Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng., 229(1), 44-51. https://doi.org/10.1177/0954408913509090
  15. Pakar, I., Bayat, M. and Bayat, M. (2016), "Approximate analytical solution of nonlinear systems using homotopy perturbation method", Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng., 230(1), 10-17. https://doi.org/10.1177/0954408914533104
  16. Pirbodaghi, T. and Hoseini, S. (2010), "Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity", J. Computat. Nonlinear Dyn., 5, 011006. https://doi.org/10.1115/1.4000315
  17. Rafei, M., Ganji, D.D., Daniali, H. and Pashaei, H. (2007), "The variational iteration method for nonlinear oscillators with discontinuities", J. Sound Vib., 305(4-5), 614-620. https://doi.org/10.1016/j.jsv.2007.04.020
  18. Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
  19. Sadighi, A. and Ganji, D.D. (2007), "Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods", Int. J. Nonlinear Sci. Numer. Simul., 8(3), 435-443. https://doi.org/10.1515/IJNSNS.2007.8.3.435
  20. Samaee, S.S., Yazdanpanah, O. and Ganji, D.D. (2015), "New approaches to identification of the Lagrange multiplier in the variational iteration method", J. Brazil. Soc. Mech. Sci. Eng., 37(3), 937-944. https://doi.org/10.1007/s40430-014-0214-3
  21. Shou, D.H. (2012), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459.
  22. Tari, H., Ganji, D.D. and Rostamian, M. (2007a), "Approximate solutions of K (2, 2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method", Int. J. Nonlinear, 8(2), 203-210.
  23. Tari, H., Ganji, D.D. and Babazadeh, H. (2007b), "The application of He's variational iteration method to nonlinear equations arising in heat transfer", Phys. Lett. A, 363(3), 213-217. https://doi.org/10.1016/j.physleta.2006.11.005
  24. Wazwaz, A.M. (2007), "The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
  25. Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos Solitons Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029