DOI QR코드

DOI QR Code

Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam

  • Vinyas, M. (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
  • Received : 2016.12.07
  • Accepted : 2017.05.29
  • Published : 2017.08.25

Abstract

The present article examines the static response of multilayered magneto-electro-elastic (MEE) beam in thermal environment through finite element (FE) methods. On the basis of the minimum total potential energy principle and the coupled constitutive equations of MEE material, the FE equilibrium equations of cantilever MEE beam is derived. Maxwell's equations are considered to establish the relation between electric field and electric potential; magnetic field and magnetic potential. A simple condensation approach is employed to solve the global FE equilibrium equations. Further, numerical evaluations are made to examine the influence of different in-plane and through-thickness temperature distributions on the multiphysics response of MEE beam. A parametric study is performed to evaluate the effect of stacking sequence and different temperature profiles on the direct and derived quantities of MEE beam. It is believed that the results presented in this article serve as a benchmark for accurate design and analysis of the MEE smart structures in thermal applications.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  2. Akgoz, B. and Civalek, O. (2015), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
  3. Akgoz, B. and Civalek, O. (2015), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
  4. Alaimo, A., Benedetti, I. and Milazzo, A. (2014), "A finite element formulation for large deflection of multilayered magnetoelectro-elastic plates", Compos. Struct., 107, 643-653. https://doi.org/10.1016/j.compstruct.2013.08.032
  5. Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part. B. Eng., 83, 226-241. https://doi.org/10.1016/j.compositesb.2015.08.038
  6. Badri, T.M. and Al-Kayiem, H.H, (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244. https://doi.org/10.3923/ajsr.2013.236.244
  7. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  8. Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294, 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030
  9. Buchanan, G.R. (2004), "Layered versus multiphase magnetoelectro-elastic composites", Compos. Part. B. Eng., 35(5), 413-420. https://doi.org/10.1016/j.compositesb.2003.12.002
  10. Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3-5), 722-734. https://doi.org/10.1016/j.jsv.2007.03.021
  11. Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279(1), 237-251. https://doi.org/10.1016/j.jsv.2003.10.033
  12. Civalek, O., Demir, C. and Akgoz. B. (2009), "Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci., 1(2), 47-56.
  13. Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
  14. Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10(3), 173-185. https://doi.org/10.1080/15502280902797207
  15. Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451. https://doi.org/10.1007/s00339-016-0001-3
  16. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 10.1177/1077546316646239.
  17. Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
  18. Hosseini, M. and Dini, A. (2015), "Magneto-thermo-elastic response of a rotating functionally graded cylinder", Struct. Eng. Mech., 56(1), 137-156. https://doi.org/10.12989/sem.2015.56.1.137
  19. Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", Eur. J. Mech. A Solid., 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002
  20. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
  21. Kattimani, S.C. and Ray, M.C. (2014), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10(4), 351-378. https://doi.org/10.1007/s10999-014-9252-3
  22. Kattimani, S.C. and Ray, M.C. (2014), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 14, 51-6.
  23. Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
  24. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
  25. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magnetoelectro-elastic nanoplates based on the nonlocal theory", Acta. Mech. Sinica., 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3
  26. Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupl. Syst. Mech., 1(2), 205-217. https://doi.org/10.12989/csm.2012.1.2.205
  27. Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate", Coupl. Syst. Mech., 2, 1-22. https://doi.org/10.12989/csm.2013.2.1.001
  28. Kuang, Z.B. (2011), "Physical variational principle and thin plate theory in electro-magneto-elastic analysis", Int. J. Solid. Struct., 48(2), 317-325. https://doi.org/10.1016/j.ijsolstr.2010.10.008
  29. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase Magneto-Electro-Elastic beam under thermal environment", Multidisc. Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401
  30. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006
  31. Lage, G.R., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026
  32. Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033
  33. Mahieddine, A. and Quali, M. (2008) "Finite element formulation of a beam with piezoelectric patch", J. Eng. Appl. Sci., 3, 803-807.
  34. Milazzo, A. (2012), "An equivalent single-layer model for magnetoelectroelastic multilayered plate dynamics", Compos. Struct., 94(6), 2078-2086. https://doi.org/10.1016/j.compstruct.2012.01.020
  35. Milazzo, A. and Orlando, C. (2012), "An equivalent single-layer approach for free vibration analysis of smart laminated thick composite plates", Smart Mater. Struct., 21(7), 075031. https://doi.org/10.1088/0964-1726/21/7/075031
  36. Milazzo, A., Orlando, C. and Alaimo, A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart Mater. Struct., 18(8), 85012. https://doi.org/10.1088/0964-1726/18/8/085012
  37. Moita, J.M.S, Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. https://doi.org/10.1016/j.compstruct.2009.04.007
  38. Pan, E. and Heyliger, H. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693
  39. Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magnetoelectro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876. https://doi.org/10.1016/j.ijsolstr.2003.08.003
  40. Phoenix, S.S., Satsangi, S.K. and Singh, B.N. (2009), "Layer-wise modelling of magneto-electro-elastic plates", J. Sound Vib., 324(3-5), 798-815. https://doi.org/10.1016/j.jsv.2009.02.025
  41. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292, 626-644. https://doi.org/10.1016/j.jsv.2005.08.004
  42. Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034
  43. Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001
  44. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851.
  45. Tauchert, T.R. (1996), "Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading", J. Therm. Stress., 19, 287-296. https://doi.org/10.1080/01495739608946175
  46. Vaezi, M., Shirbani, M.M. and Hajnayeb, A. (2016), "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Phys. E, 75, 280-286. https://doi.org/10.1016/j.physe.2015.09.019
  47. Van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H. (1974), "An in situ grown eutectic magnetoelectric composite material", J. Mater. Sci., 9(10), 1710-1714. https://doi.org/10.1007/BF00540771
  48. Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto-electro-elastic plates", Int. J. Solid. Struct., 40(7), 1669-1680. https://doi.org/10.1016/S0020-7683(03)00027-1
  49. Wang, X. and Shen, Y. (2002), "The general solution of threedimensional problems in magnetoelectroelastic media", Int. J. Eng. Sci., 40(10), 1069-1080. https://doi.org/10.1016/S0020-7225(02)00006-X
  50. Xin, L. and Hu, Z. (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC Approach", Compos. Struct., 125, 96-103. https://doi.org/10.1016/j.compstruct.2015.01.048
  51. Xue, C.X., Pan, E., Zhang, S.Y. and Chu, H.J. (2011), "Large deflection of a rectangular magnetoelectroelastic thin plate", Mech. Res. Commun., 38(7), 518-523. https://doi.org/10.1016/j.mechrescom.2011.07.003

Cited by

  1. micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae0c8
  2. Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2017, https://doi.org/10.12989/sem.2020.73.6.667