References
- Abbass, H.A. (2003), "Speeding up backpropagation using multiobjective evolutionary algorithms", Neur. Comput., 15(11), 2705-2726. https://doi.org/10.1162/089976603322385126
- Abolbashari, M.H., Nazari, F. and Rad, J.S. (2014), "A multicrack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network", Struct. Eng. Mech., 51(2), 299-313. https://doi.org/10.12989/sem.2014.51.2.299
- Adriana, T.A.D., Monica, B.L. and Koji de, J.N. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Constr. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
- Arslan, M.H. (2010), "An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks", Eng. Struct., 32(7), 1888-1898. https://doi.org/10.1016/j.engstruct.2010.03.010
- Arslan, M.H., Ceylan, M. and Koyuncu, T. (2012), "An ANN approaches on estimating earthquake performances of existing RC buildings", Neur. Network World, 22(5), 443. https://doi.org/10.14311/NNW.2012.22.027
- Arslan, M.H., Ceylan, M. and Koyuncu, T. (2015), Determining earthquake performances of existing reinforced concrete buildings by using ANN", World Acad. Sci. Eng. Tech. Int. J. Civil Environ. Struct. Constr. Arch. Eng., 9(8), 921-925.
- Awan, S.M., Aslam, M., Khan, Z.A. and Saeed, H. (2014), "An efficient model based on artificial bee colony optimization algorithm with Neural Networks for electric load forecasting", Neur. Comput. Appl., 25(7-8), 1967-1978. https://doi.org/10.1007/s00521-014-1685-y
- Azar, A.T., El-Said, S.A., Balas, V.E. and Olariu, T. (2013), "Linguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-Squamous diseases", Soft Computing Applications, Springer Berlin Heidelberg.
- Baughman, D.R. and Liu, Y.A. (2014), Neural Networks in Bioprocessing and Chemical Engineering, Academic Press.
- Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches", Res. Nondestruct. Eval., 26(1), 35-55. https://doi.org/10.1080/10589751003770100
- Bilgehan, M. and Turgut, P. (2010), "Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity", Res. Nondestruct. Eval., 21(1), 1-17. https://doi.org/10.1080/09349840903122042
- Caglar, N., Elmas, M., Yaman, Z.D. and Saribiyik, M. (2008), "Neural networks in 3-dimensional dynamic analysis of reinforced concrete buildings", Constr. Build. Mater., 22(5), 788-800. https://doi.org/10.1016/j.conbuildmat.2007.01.029
- Cao, Z., Cheng, L., Zhou, C., Gu, N., Wang, X. and Tan, M. (2015), "Spiking neural network-based target tracking control for autonomous mobile robots", Neur. Comput. Appl., 26(8), 1839-1847. https://doi.org/10.1007/s00521-015-1848-5
- Chandwani, V., Agrawal, V. and Nagar, R. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Exp. Syst. Appl., 42(2), 885-893. https://doi.org/10.1016/j.eswa.2014.08.048
- Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S. and Balas, V.E. (2016), "Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings", Neur. Comput. Appl., 28(8), 1-12. https://doi.org/10.1162/NECO_a_00798
- Chen, B. and Liu, W. (2010), "Mobile agent computing paradigm for building a flexible structural health monitoring sensor network", Comput. Aid. Civil Infrastr. Eng., 25(7), 504-516. https://doi.org/10.1111/j.1467-8667.2010.00656.x
- Chen, J.F., Do, Q.H. and Hsieh, H.N. (2015), Training artificial neural networks by a hybrid PSO-CS algorithm", Algorithm., 8(2), 292-308. https://doi.org/10.3390/a8020292
- Chou, J.S., Chiu, Ch.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
- Ciancio, C., Ambrogio, G., Gagliardi, F. and Musmanno, R. (2015), "Heuristic techniques to optimize neural network architecture in manufacturing applications", Neur. Comput. Appl., 27(7), 1-15. https://doi.org/10.1162/NECO_a_00684
- Coello, C.A.C. (1999), "A comprehensive survey of evolutionarybased multiobjective optimization techniques", Knowled. Inform. Syst., 1(3), 269-308. https://doi.org/10.1007/BF03325101
- Costa, M.A., Braga, A.P., Menezes, B.R., Teixeira, R.A. and Parma, G.G. (2003), "Training neural networks with a multiobjective sliding mode control algorithm", Neurocomput., 51, 467-473. https://doi.org/10.1016/S0925-2312(02)00697-5
- Dash, R.N., Subudhi, B. and Das, S. (2010), "A comparison between MLP NN and RBF NN techniques for the detection of stator inter-turn fault of an induction motor", 2010 International Conference on Industrial Electronics, Control and Robotics.
- Deb, K. (2001), Multi-objective Optimization Using Evolutionary Algorithms, Vol. 16, John Wiley & Sons.
- Dehuri, S. and Cho, S.B. (2010), "A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets", Neur. Comput. Appl., 19(2), 317-328. https://doi.org/10.1007/s00521-009-0310-y
- Deshpande, N., Londhe, S. and Kulkarni, S. (2014), "Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and non-linear regression", Int. J. Sustain. Built Environ., 3(2), 187-198. https://doi.org/10.1016/j.ijsbe.2014.12.002
- Fayyadh, M.M. and Razak, H.A. (2011), "Stiffness reduction index for detection of damage location: analytical study", Int. J. Phys. Sci., 6(9), 2194-2204.
- Gao, S., Ning, B. and Dong, H. (2015), "Adaptive neural control with intercepted adaptation for time-delay saturated nonlinear systems", Neur. Comput. Appl., 26(8), 1849-1857. https://doi.org/10.1007/s00521-015-1855-6
- Guneyisi, E., Gesoglu, M., Ozturan, T. and Ozbay, E. (2009), Estimation of chloride permeability of concretes by empirical modeling: considering effects of cement type, curing condition and age", Constr. Build. Mater., 23(1), 469-481. https://doi.org/10.1016/j.conbuildmat.2007.10.022
- Guyon, I. and Elisseeff, A. (2003), "An introduction to variable and feature selection", J. Mach. Learn. Res., 3, 1157-1182.
- Hadi, M.N. (2003), "Neural networks applications in concrete structures", Comput. Struct., 81(6), 373-381. https://doi.org/10.1016/S0045-7949(02)00451-0
- Hajela, P. and Berke, L. (1991), "Neurobiological computational models in structural analysis and design", Comput. Struct., 41(4), 657-667. https://doi.org/10.1016/0045-7949(91)90178-O
- Han, J., Pei, J. and Kamber, M. (2011), Data Mining: Concepts and Techniques, Elsevier.
- Hand, D.J. (1997), Construction and Assessment of Classification Rules, Wiley.
- He, X. and Xu, S. (2009), Process Neural Networks, Theory and Applications, Springer.
- Hore, S., Chatterjee, S., Sarkar, S., Dey, N., Ashour, A.S., Balas-Timar, D. and Balas, V.E. (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. https://doi.org/10.12989/sem.2016.58.3.459
- Jeng, D.S., Cha, D.H. and Blumenstein, M. (2003), "Application of neural network in civil engineering problems", Proceedings of the International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research (IPSI-2003).
- Jiang, X. and Adeli, H. (2007), "Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings", Int. J. Numer. Meth. Eng., 71(5), 606-629. https://doi.org/10.1002/nme.1964
- Karayiannis, N. and Venetsanopoulos, A.N. (2013), Artificial Neural Networks: Learning Algorithms, Performance Evaluation, and Applications, Springer Science & Business Media.
- Kaveh, A. and Nasrollahi, A. (2014), "A new hybrid metaheuristic for structural design: ranked particles optimization", Struct. Eng. Mech., 52(2), 405-426. https://doi.org/10.12989/sem.2014.52.2.405
- Kaveh, A. and Zolghadr, A. (2014), "A new PSRO algorithm for frequency constraint truss shape and size optimization", Struct. Eng. Mech., 52, 445-468. https://doi.org/10.12989/sem.2014.52.3.445
- Khajehzadeh, M., Taha, M.R. and Eslami, M. (2014), "Multiobjective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., 50(3), 257-273. https://doi.org/10.12989/sem.2014.50.3.257
- Kia, A. and Sensoy, S. (2014), "Classification of earthquakeinduced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural network", Mathematical Problems in Engineering, 2014.
- Knezevic, M., Cvetkovska, M. and Trombeva-Gavriloska, A. (2014), "Application of artificial neural networks in civil engineering", Tehnicki Vjesnik/Technical Gazette, 21(6), 1353-1359.
- MacIntyre, J. (2013), "Applications of neural computing in the twenty-first century and 21 years of neural computing & applications", Neur. Comput. Appl., 23(3-4), 657-665. https://doi.org/10.1007/s00521-013-1471-2
- Maren, A.J., Harston, C.T. and Pap, R.M. (2014), Handbook of Neural Computing Applications, Academic Press.
- Marti-Vargas, J.R., Ferri, F.J. and Yepes, V. (2013), "Prediction of the transfer length of prestressing strands with neural networks", Comput. Concrete, 12(2), 187-209. https://doi.org/10.12989/cac.2013.12.2.187
- Mirjalili, S.Z., Saremi, S. and Mirjalili, S.M. (2015), "Designing evolutionary feedforward neural networks using social spider optimization algorithm", Neur. Comput. Appl., 26(8), 1919-1928. https://doi.org/10.1007/s00521-015-1847-6
- Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neur. Network., 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
- Mukherjee, A. and Deshpande, J.M. (1995), "Modeling initial design process using artificial neural networks", J. Comput. Civil Eng., 9(3), 194-200. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(194)
- Nanda, S.J. and Panda, G. (2014), "A survey on nature inspired metaheuristic algorithms for partitional clustering", Swarm Evolut. Comput., 16, 1-18. https://doi.org/10.1016/j.swevo.2013.11.003
- Oreta, A.W. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554)
- Pierce, S.G., Worden, K. and Manson, G. (2006), "A novel information-gap technique to assess reliability of neural network-based damage detection", J. Sound Vib., 293(1), 96-111. https://doi.org/10.1016/j.jsv.2005.09.029
- Rahmanian, B., Pakizeh, M., Mansoori, S.A.A., Esfandyari, M., Jafari, D., Maddah, H. and Maskooki, A. (2012), "Prediction of MEUF process performance using artificial neural networks and ANFIS approaches", J. Taiwan Inst. Chem. Eng., 43(4), 558-565. https://doi.org/10.1016/j.jtice.2012.01.002
- Rogers, J.L. (1994), "Simulating structural analysis with neural network", J. Comput. Civil Eng., 8(2), 252-265. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(252)
- Rojas, R. (2013), Neural Betworks: a Systematic Introduction, Springer Science & Business Media.
- Sadowski, L. (2013), "Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks", Arch. Civil Mech. Eng., 13(1), 104-111. https://doi.org/10.1016/j.acme.2012.10.007
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks", J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Siddiquee, M.S.A. and Hossain, M.M.A. (2015), "Development of a sequential Artificial Neural Network for predicting river water levels based on Brahmaputra and Ganges water levels", Neur. Comput. Appl., 26(8), 1979-1990. https://doi.org/10.1007/s00521-015-1871-6
- Socha, K. and Blum, C. (2007), "An ant colony optimization algorithm for continuous optimization: application to feedforward neural network training", Neur. Comput. Appl., 16(3), 235-247. https://doi.org/10.1007/s00521-007-0084-z
- Stratman, B., Mahadevan, S., Li, C. and Biswas, G. (2011), "Identification of critical inspection samples among railroad wheels by similarity-based agglomerative clustering", Integ. Comput. Aid. Eng., 18(3), 203-219.
- Teixeira, R.D.A., Braga, A.D.P., Takahashi, R.H. and Saldanha, R.R. (2000), "A multi-objective optimization approach for training artificial neural networks", Neural Networks, 2000.
- Proceedings, Sixth Brazilian Symposium on, IEEE. Tiliouine, B. and Fedghouche, F. (2014), "Cost optimization of reinforced high strength concrete T-sections in flexure", Struct. Eng. Mech., 49(1), 65-80. https://doi.org/10.12989/sem.2014.49.1.065
- Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech., 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755
- Van Gent, M.R.A., van dern Boogaard, H.F.P., Pozueta, B. and Medina, J.R. (2007), "Neural network modelling of wave overtopping at coastal structures", Coast. Eng., 54, 586-593. https://doi.org/10.1016/j.coastaleng.2006.12.001
- Vanluchene, R.D. and Sun, R. (1990), "Neural networks in structural engineering", Comput. Aid. Civil Infrastr. Eng., 5(3), 207-215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x
- Veeramachaneni, K., Peram, T., Mohan, C. and Osadciw, L.A. (2003), "Optimization using particle swarms with near neighbor interactions", Proceedings of the Genetic and Evolutionary Computation Conference, Springer Berlin Heidelberg.
- Zhang, T. (2009), "On the consistency of feature selection using greedy least squares regression", J. Mach. Learn. Res., 10, 555-568.
- Zitzler, E. and Thiele, L. (1998), "An evolutionary algorithm for multiobjective optimization: The strength pareto approach".
- Zitzler, E., Laumanns, M. and Thiele, L. (2001), "SPEA2: Improving the strength Pareto evolutionary algorithm", Eurogen, 3242(103), 95-100.
Cited by
- IDS Using Reinforcement Learning Automata for Preserving Security in Cloud Environment : vol.8, pp.4, 2017, https://doi.org/10.4018/ijismd.2017100102
- Bounded, Multidimensional, Integrated Memetic Evolution for Character Recognition Based on Predictive Elimination Theory and Optimization Techniques : vol.10, pp.1, 2017, https://doi.org/10.4018/ijamc.2019010104
- A Generalized and Robust Anti-Predatory Nature-Inspired Algorithm for Complex Problems : vol.10, pp.1, 2017, https://doi.org/10.4018/ijamc.2019010105
- Torsion design of CFRP-CFST columns using a data-driven optimization approach vol.251, pp.no.pa, 2017, https://doi.org/10.1016/j.engstruct.2021.113479