DOI QR코드

DOI QR Code

고분자고체형연료전지용 나노백금족입자의 제조와 응용기술 동향

Trends in Production and Application Technology of Nano-platinum Group Particles for PEFC

  • 길상철 (한국과학기술정보연구원) ;
  • 황용길 (동아대학교 (ReSeat프로그램))
  • 투고 : 2016.11.11
  • 심사 : 2017.03.13
  • 발행 : 2017.06.30

초록

수소연료전지자동차(FCV)의 핵심은 고분자고체형연료전지(Polymer Solid Fuell Cell: PEFC)이고 전지 중에서 전기화학적 전기를 발생하는 핵심 소재는 백금촉매이다. 백금은 남아프리카와 러시아 등에 편재되어있고, 백금의 세계생산량은 연간 약 178톤이고 고가이므로 리싸이클링 한다. 현재 PEFC에 Pt를 사용하는 양은 $0.2{\sim}0.1mg/cm^2$인데, 전지의 가격을 줄여서 FCV보급을 확대하기 위하여 사용하는 Pt양을 $0.05{\sim}0.03mg/cm^2$까지 감소시키는 것을 목표로 하여 각국이 연구 개발하고 있다. 나노배금 제조기술은 건식법과 습식법으로 크게 나누며 습식환원법을 중심으로 제조하는 방식이 Pt를 제조하는데 유리하다. 나노Pt를 이용하여 폴리올법, 개량형 Cu-UPD/Pt 치환법 및 나노캡슐법 등에 의해 $Pt-Pd/Al_2O_3$, Pt/C, Pt/GCB, Pt/Au/C, PtCo/C, PtPd/C 등의 Pt촉매가 연구 개발되고 있으며, Pt촉매의 활성향상 및 안정화 기술 등이 보고되고 있다. 본고는 나노Pt와 나노Pt촉매의 제조기술 및 폐 촉매의 리사이클링 및 Pt촉매의 응용기술 경향을 조사 분석하였다.

The core of Hydrogen Fuel Cell Vehicles (FCV) is polymer solid fuel cell (PEFC), and the core material that generates electrochemical electricity in the cell is platinum catalyst. Platinum is localized in South Africa and Russia, and the world production of Pt is about 178 tons per year, which is expensive and recycled. At present, the amount of Pt used in PEFC is $0.2{\sim}0.1mg/cm^2$. In order to reduce the price of the battery and increase the FCV supply, the target is to reduce the amount of Pt used to $0.05{\sim}0.03mg/cm^2$. $Pt-Pd/Al_2O_3$, Pt/C, Pt/GCB, Pt/Au/C, PtCo/C, PtPd/C, etc. by using polyol method using nano Pt, improved Cu-UPD/Pt substitution method and nano-capsule method, Have been researched and developed, and there have been reported techniques for improving the activity of Pt catalysts and stabilizing them. This paper investigates the production technology of nano-Pt and nano-Pt catalysts, recycling of spent Pt catalysts and application trends of Pt catalysts.

키워드

참고문헌

  1. Watanabe Yasushi 2011 : The Development of Platinum Group Resources, KINZOKU, 81(2), pp. 99-103.
  2. http://mric.jogmec.jp/public/2014.../5,20140601
  3. Johnson Matthey, Platinum 2010(Japan)
  4. Yoko Yamabe-Mitarai, et al., 2011 : Effective Use of Platinum Group Metals, J. Japan Inst. Metals, 75(1), pp. 10-20. https://doi.org/10.2320/jinstmet.75.10
  5. T. Osaki and Y. Tai, 2011 : Technology for reducing platinum group elements in catalysts by controlling pore structure, KINZOKU, 81(2), pp. 109-112.
  6. S. Miyata and M. Kakimoto, 2010 : Carbon alloy low price substitute alternative to platinum, Eng. Materials Japan, 58(1), pp. 20-21.
  7. NEDO Report, 2008: Research and development trend of fuel cell platinum alternatives, NEDO, No. 1015, pp. 1-9.
  8. A. Hyono and T. Yonezawa, 2010 : Wet Preparation Process of Metal Nano and Fine-Particles and Their Applications, Ceramics, 45(8), pp. 609-612.
  9. Nakamura Keitaro, 2014 : Examples of manufacturing by nanoparticle manufacturing technology high frequency plasma method, Eng. Materials Japan, 62(12), pp. 33-36.
  10. Naoki Shirai, 2014 : Synthesis of Nanoparticles by Plasma-liquid Interaction Using Atmospheric Plasma Electrolysis, Function & Materials, 34(10), pp. 4-9.
  11. Hayashi Yamato, 2014 : Creation of nanometer microstructure using ultrasonic stimulus counter, KINZOKU, 84(11), pp. 886-893.
  12. Toshio Sakai, 2013 : Synthesis of gold ion reduction in ultrasonic irradiation water and autogenous formation of gold nanoparticles, Chemical Engineering, 0(4), pp. 265-270.
  13. H. Sasaki, M. Maeda, 2011 : Dissolution Method for Precious Metals Using Alloying and Atomization Pretreatment, J. Japan Inst. Metals, 75(11), pp. 602-606. https://doi.org/10.2320/jinstmet.75.602
  14. T. Miki and Y. Tai, 2014 : Technology for using platinum group gold mineralization in automobile exhaust gas catalyst. KINZOKU, 84(10), pp. 602-608.
  15. http://japanscience and technology agency.
  16. Mika Eguchi, et al., 2011 : Characterization of Multi-Walled Carbon Nanotube-Supported Pt catalyst prepared by metyal nanocolloidal solution for a Polymer Electrolyte Fuell Cell catalyst, Surface Technology, 62(3), pp. 179-182.
  17. Tohoku University, 2013 : Succeeded in commercialization of water-based platinum nanoparticle dispersion that does not use protective gauze, Tohoku University, 3m.
  18. C. Horike, K. Morita, and T. H. Okabe, 2013 : Dissolution of Platinum by Hydrochloric Acid : Development of Envirnmentally Sound New Recycling Process, Materia Japan, 52(2), pp. 71-73. https://doi.org/10.2320/materia.52.71
  19. Y. Miyabayashi, 2013 : Recycling of copper, precious metals using copper smelting, KINZOKU, 83(11), pp. 916-920.
  20. Tanaka Mikiya, 2011 : Recycling of Rare-metals Japan, Chemical and Education Japan, 59(10), pp. 520-523.
  21. Narita Hirokazu, 2011 : Petrochemical separation and purification of platinum group catalyst recycle, KINZOKU, 81(2), pp. 104-108.
  22. Mikiya Tanaka, et al., 2011 : Studies on the Recycling Technologies for Rare Metals Mainly by Hydromeallurgical Methods, Materia Japan, 50(4), pp. 161-16. https://doi.org/10.2320/materia.50.161
  23. Makoto Uchida, et al., 2015 : Development of High Performance Electrochatalysts for Fuel Cell Vehicles by Nanotechnology, J. Society of Automotive Eng. Japan, 69(11), pp. 63-71.
  24. Watanabe Masahiro, 2010 : Research and development of innovative materials for next generation fuel cells, Panasonic Technical Journal, 56(2), pp. 76-81.
  25. T. Miki and Y. Tai, 2015 : Development of Preparation Method Suitable for the Mass production of PGM Nano-Particle Catalyst, J. Society of Automotive Eng. Japan, 69(11), pp. 33-38.
  26. H. Taimon and M. Inaba, 2014 : Development of highly activated durable core/shell catalyst for fuel cells, Engineering Materials Japan, 62(6), pp. 38-42.
  27. Makoto Uchida, et al., 2013 : Development History and Future Design of Reduction of Pt in Catalyst Layer and Improvement of Reliability for Polymer Electrolyte Fuell Cells, Pulverization Japan, No. 56, pp. 3-11.
  28. Ohhata Tsumoru, 2015 : Mixed dispersion technology for making fuel cell catalyst slurry, Engineering Materials Japan, 63(12), pp. 49-52.
  29. Fuel cell field, New Energy Department, 2014 : NEDO New Energy Achievement Report, NEDO, 6 m.
  30. http://fuelcell.kist.re.kr/Teams/fuellcell/03-02.htm
  31. ahm@ekn.kr
  32. http://kbmaeil.com/news/articlePrint.html?idxno=249347