DOI QR코드

DOI QR Code

중부지방소나무의 생장특성 및 경험적 임분수확모델 개발

Characteristics of Growth and Development of Empirical Stand Yield Model on Pinus densiflora in Central Korea

  • 전주현 (국립산림과학원 산림산업연구과) ;
  • 손영모 (국립산림과학원 산림산업연구과) ;
  • 강진택 (국립산림과학원 산림산업연구과)
  • Jeon, Ju Hyeon (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Son, Yeong Mo (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Kang, Jin Taek (Division of Forest Industry Research, National Institute of Forest Science)
  • 투고 : 2017.03.16
  • 심사 : 2017.05.06
  • 발행 : 2017.06.30

초록

본 연구는 중부지방소나무에 대하여 현실림을 반영한 수확표를 조제하기 위하여 수행되었다. 현재 사용하고 있는 수확표는 정상적인 생육 이상의 군락을 대상으로 조사 분석한 결과로 현실림보다 과대한 값을 제공하여 법정림 외에 적용하기는 다소 어려운 점이 있었다. 따라서 본 연구에서는 침엽수 대표 수종인 소나무를 대상으로 현실림에 대한 임분 생장량을 추정하였다. 본 연구에 이용한 자료는 국가산림자원조사(National Forest Inventory) 자료 중 1,957개의 중부지방소나무 표본점 자료를 이용하였다. 분석절차는 직경분포의 추정, 적합, 예측의 단계를 거쳤으며, 직경분포모델은 Weibull 함수를 이용하였다. 생장모델 내 평균직경과 평균흉고단면적 추정 시 사용한 모델은 Weibull과 Schumacher였다. 기준임령 30년을 바탕으로 중부지방소나무의 지위지수 범위는 8-14에 있는 것으로 나타났다. 임분수확표 지위 12에 따르면, 30년생일때 연평균생장량(MAI)이 $4.42m^3/ha$로 나타났다. 기존 수확표와 비교하였을 때 본 연구결과의 연평균생장량이 더 낮은 것을 알 수 있으며, 이는 법정림과 현실림의 지위지수별 연령별 재적의 차를 쌍체 T-검정(paired t-test)한 결과, 0.001이하의 p-value를 가져 통계적으로 유의한 차이가 있는 것으로 판단하였다. 본 연구의 결과를 바탕으로 중부지방소나무의 현실적인 산림 경영과 관리정책에 도움을 줄 수 있을 것으로 사료된다.

This study was conducted to construct a empirical yield table for Pinus densiflora in real forest. Since existing normal yield tables have been derived by studying and analyzing communities in ideal environment for tree growth, those tables provide more over-estimated values than ones from real forest. Because of this, there are some difficulties to apply the tables to empirical forest except for normal forest. In this study, therefore, we estimated stand growth for real forest on P. densiflora as the representative species of conifers. We used 1,957 sample plot data of P. densiflora in central Korea from National Forest Inventory (NFI) system, and analyzed through estimation, recovery and prediction in order by using Weibull function as a diameter distribution model. Weilbull and Schumacher models were applied for estimating mean DBH and mean basel area and it was found that the site index for P. densiflora in central Korea ranges from 8 to 14 at reference age 30. According to site 12 in the stand yield table, the Mean Annual Increment (MAI) of P. densiflora was $4.42m^3/ha$ at 30 years of age. Compared to existing volume table constructed before, it is showed that MAI of this study were lower. According to the paired t-test that is conducted with the gap of volume values between normal forest and real forest by site index and age, the P-value was less than 0.001 which is recognized to have a statistically significant difference. Based on the results in this study, it is considered to be helpful for practical management and management policy on P. densiflora in central Korea.

키워드

참고문헌

  1. Bruce, D. and Schumacher, F.X., 1935. Forest Mensuration. 1st ed. New York. McGrw-Hill Co. pp. 376.
  2. Chapman, D.G., 1961. Statistical problems in dynamics of exploited fisheries populations. In Proc. 4th Berkeley Symp. Math. Stat. and Prob., Univ. Calif. Press, Berkeley, pp. 153-168.
  3. Clutter, J.L., Fortson, J.C., Pienaar, L.V., Brister, G.H. and Bailey, R.L., 1983. Timber management-A quantitative approach-. John Wiley & Sons. pp. 333.
  4. Edwards, P.N. and Christie, J.M. 1981. Yield models for forest management. For. Comm. Booklet 48, pp. 32.
  5. Garcia, O. 1981. Simplified method-of-moments estimation for the weibull distribution. New Zealand journal of Forest Science 11(3): 304-306.
  6. Hamilton, G.J. 1988. Forest Meansureation Handbook. For. Comm. Booket No39, HMSO, London. pp. 274.
  7. Leary, R.A. 1991. Near-normal, empirical, and identity yield tables for estimating stand growth. Can. J. For. Res. 21: 353-362. https://doi.org/10.1139/x91-043
  8. NIFoS; National Institute of Forest Science. 2012. Stand volume biomass and stand yield table. 3rd ed. National Institute of Forest Science, pp. 261.
  9. Schumacher, F.X. 1939. A new growth curve and its application to timber yield studies. J. For. 37: 819-820.
  10. Son, Y.M., Kim, S.W., Lee, S.J. and Lim, J.S. 2014. Estimation of stand yield and carbon stock for robinia pseudoacacia stands in Korea. Journal of korean forest society 103(2): 264-269. https://doi.org/10.14578/jkfs.2014.103.2.264
  11. Son, Y.M., Kang, J.T., Hwang, J.S., Park, H. and Lee, K.S. 2015. Assessment and prediction of stand yield in cryptomeria japonica stands. Journal of korean forest society 104(3): 421-426. https://doi.org/10.14578/jkfs.2015.104.3.421
  12. Reineke, L.H. 1927. A modification of Bruce's method of preparing timber yield tables. J. Agric. Res. 35: 843-856.
  13. Richard, F.J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10: 290-300. https://doi.org/10.1093/jxb/10.2.290
  14. Vanclay, J.K. 1994. Modelling forest growth and yield : applications to mixed tropical forests. Southern Cross University, pp. 330.
  15. Vuokila, Y. 1965. Functions for variable density yield tables of pine based on temporary sample plots. Commun. Unst. For. Fenn. 60(4): 1-86.
  16. Weibull, W. 1951. Applied Linear Regression, 2nd. ed. Wiley, N.Y. pp. 324.