References
- Alibeigloo, A. and Shabanm, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
- Alibeigloo, A. (2014), "Free vibration analysis of functionally graded carbon nanotubereinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity", Eur. J. Mech. A - Solids, 44, 104-115. https://doi.org/10.1016/j.euromechsol.2013.10.002
- Alijani, A., Darvizeh, M., Darvizeh, A. and Ansari, R. (2015), "On nonlinear thermal buckling analysis of cylindrical shells", Thin Wall. Struct., 95, 170-182. https://doi.org/10.1016/j.tws.2015.06.013
- Anon, A. (1996), "FGM components: PM meets the challenge", Met. Powd. Rep., 51, 28-32.
- Bich, D.H., VanDung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Civalek, O. (2016), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B, In press.
- Eringen, A.C. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fazzolari, F.A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. https://doi.org/10.1016/j.compstruct.2014.10.039
- Haddadpour, H., Mahmoud khanim, S. and Navazi, H.M. (2007), "Free vibration analysis of functionally graded cylindrical shells including thermal effects", Thin Wall. Struct., 45(6), 591-599. https://doi.org/10.1016/j.tws.2007.04.007
- Hosseini-Hashemi, SH., Abaei, A.R. and Ilkhani, M.R. (2015), "Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions", Compos. Struct., 126, 1-15. https://doi.org/10.1016/j.compstruct.2015.02.031
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002
- Jin, G., Ye, T., Wang, X. and Miao, X. (2016), "A unified solution for the vibration analysis of FGM doubly-curved shells of revolution with arbitrary boundary conditions", Compos. Part B: Eng., 89, 230-252. https://doi.org/10.1016/j.compositesb.2015.11.015
- Khalili, S.M.R., Davar, A. and Fard, K.M. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56(1), 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
- Koizumi, M. (1993), "The concept of FGM. ceramic transactions", Funct. Grad. Mat., 34, 3-10.
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Li, Y.Q. and Tamura, Y. (2005), "Nonlinear dynamic analysis for large-span single-layer reticulated shells subjected to wind loading", Wind Struct., 8(1), 35-48. https://doi.org/10.12989/was.2005.8.1.035
- Li, S. and Wang, G. (2008), Introduction to Micromechanics and Nanomechanics, World Scientific Publication, Singapore.
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Loy, C.T., Lamm K.Y. and Reddym J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., In press.
- Mosharrafian. F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931
- Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8
- Paliwal, D., Pandey, R.K. and Nath, T. (1996), "Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations", Int. J. Press. Vessel. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0
- Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291(5510), 1947-1949. https://doi.org/10.1126/science.1058120
- Qian, D., Wagne,r G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
- Rogacheva, N. (1988), "Forced vibrations of apiezoceramic cylindrical shell with longitudinal polarization", J. Appl. Math. Mech., 52(5), 641-646. https://doi.org/10.1016/0021-8928(88)90114-1
- Rahimi, G.H., Ansari, R. and Hemmatnezhad, M. (2011), "Vibration of functionally graded cylindrical shells with ring support", Scient. Iran. B, 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026
- Reddy, J.N. (2002), Mechanics of laminated composite plates and shells: Theory and analysis, 2nd Ed., CRC Press.
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Method. Appl. M., 213-216, 196-205. https://doi.org/10.1016/j.cma.2011.11.025
- Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1998), Physical properties of carbon nanotubes, Imperial College Press, London.
- Song, X., Han, Q. and Zhai, J. (2015a), "Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method", Compos. Struct., 134, 820-830. https://doi.org/10.1016/j.compstruct.2015.08.134
- Song, X., Han, Q. and Zhai, J. (2015b), "Vibration analyses of symmetrically laminated compositecylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method", Compos. Struct., 124, 820-830.
- Uematsu, Y., Tsujiguchi, N. and Yamada, M. (2001), "Mechanism of ovalling vibrations of cylindrical shells in cross flow", Wind Struct., 4(2), 85-100. https://doi.org/10.12989/was.2001.4.2.085
- Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011
- Yakobson, B.I., Brabec C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instability beyond linear response", 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Ye, T., Jin, G. and Su, Z.H. (2016), "Three-dimensional vibration analysis of functionally graded sandwich deep open spherical and cylindrical shells with general restraints", J. Vib. Control., 22, 3326-3354. https://doi.org/10.1177/1077546314553608
- Ye, T. and Jin, G. (2016), "Elasticity solution for vibration of generally laminated beams by a modified Fourier expansion-based sampling surface method", Comput. Struct., 167, 115-130. https://doi.org/10.1016/j.compstruc.2016.02.001
- Ye, T., Jin, G. and Su, Z.H. (2016), "A spectral-sampling surface method for the vibration of 2-D laminated curved beams with variable curvatures and general restraints", Int. J. Mech. Sci., 110, 170-189. https://doi.org/10.1016/j.ijmecsci.2016.02.012
- Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84, 5552-5555. https://doi.org/10.1103/PhysRevLett.84.5552
- Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
- Zhou, H., Li, W., Lin, B. and Li, W.L. (2012), "Free vibrations of cylindrical shells with elastic-support boundary conditions", Appl. Acoust., 73(8), 751-756. https://doi.org/10.1016/j.apacoust.2012.02.008
Cited by
- Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2017, https://doi.org/10.12989/cac.2020.25.3.245