DOI QR코드

DOI QR Code

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique

  • Huynh, Thanh-Canh (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
  • Received : 2017.01.08
  • Accepted : 2017.04.08
  • Published : 2017.08.25

Abstract

In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7(5), 599-605. https://doi.org/10.1088/0964-1726/7/5/004
  2. Bhalla, S. and Soh, C.K. (2004), "Electromechanical impedance modeling for adhesively bonded piezo-transducers", J. Intel. Mat. Syst. Str., 15(12), 955-972. https://doi.org/10.1177/1045389X04046309
  3. Chaudhry, Z., Lalande, F., Ganino, A., Rogers, C. and Chung, J. (1995), "Monitoring the integrity of composite patch structural repair via piezoelectric actuators/sensors", Proceedings of the 36th Structures, Structural Dynamics and Materials Conference, New Orleans, LA, USA.
  4. COMSOL Inc., http://www.comsol.com
  5. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  6. Efunda, Inc. (2010), http://www.efunda.com
  7. Giurgiutiu, V. (2014), Structural health monitoring with piezoelectric wafer active sensors, 2nd Ed., Academic Press
  8. Giurgiutiu, V. and Zagrai, A. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monit., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
  9. Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 16(6), 997-1012.
  10. Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Probl. Eng., 2014, 1-11.
  11. Huynh, T.C. and Kim, J.T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901. https://doi.org/10.12989/sss.2016.17.6.881
  12. Huynh, T.C. and Kim, J.T. (2017), "FOS-Based prestress force monitoring and temperature effect estimation in unbonded tendons of PSC girders", J. Aerospace Eng. - ASCE, 30(2), 1-14.
  13. Huynh, T.C., Lee, K.S. and Kim, J.T. (2015b), "Local dynamic characteristics of PZT impedance interface on tendon-anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
  14. Huynh, T.C., Lee, S.Y., Kim, J.T., Park, W.S. and Han, S.H. (2013), "Simplified planar model for damage estimation of interlocked caisson system", Smart Struct. Syst., 12(3-4), 441-463. https://doi.org/10.12989/sss.2013.12.3_4.441
  15. Huynh, T.C., Nguyen, T.C., Choi, S.H. and Kim, J.T. (2016a), "Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation", Proceedings of SPIE, 9799, 1-6.
  16. Huynh, T.C., Park, J.H. and Kim, J.T. (2016b), "Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring", Measurement, 88, 385-401. https://doi.org/10.1016/j.measurement.2016.03.032
  17. Huynh, T.C., Park, Y.H., Park, J.H. and Kim, J.T. (2015a), "Feasibility verification of mountable PZT-interface for impedance monitoring in tendon-anchorage", J. Shock Vib,, 2015, 1-11.
  18. Johnson, K.L. (1985), Contact mechanics, Cambridge University Press, Cambridge.
  19. Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67. https://doi.org/10.12989/SMM.2014.1.1.047
  20. Kim, J.T., Na, W.B., Park, J.H. and Hong, D.S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceeding of SPIE, San Diego, USA.
  21. Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
  22. Koh, Y.L., Chiu, W.K., Rajic, N. and Galea, S.C. (2003), "Detection of disbond growth in a cyclically loaded bonded composite repair patch using surface-mounted piezoceramic elements", Struct. Health Monit., 2(4), 327-339. https://doi.org/10.1177/147592103039834
  23. Koo, K.Y, Park, S.H., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst.Str., 20(4), 367-377. https://doi.org/10.1177/1045389X08088664
  24. Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Review on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
  25. Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material - Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
  26. Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
  27. Lim, H.J., Kim, M.K., Sohn, H. and Park, C.Y. (2011), "Impedance-based damage detection under varying temperature and loading conditions", NDT&E Int., 44(8), 740-750. https://doi.org/10.1016/j.ndteint.2011.08.003
  28. Lopes, V., Park, G., Cudney, H.H. and Inman, D.J. (2000), "Impedance-based structural health monitoring with artificial neural networks", J. Intel. Mat. Syst. Str., 11(3), 206-214. https://doi.org/10.1106/H0EV-7PWM-QYHW-E7VF
  29. Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 1-10.
  30. Min, J., Park, S., Yun, C.B., Lee, C.G. and Lee, G. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity', Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012
  31. Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
  32. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng. - ASCE, 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
  33. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech. - ASCE, 138(2), 175-183. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000313
  34. Park, G., Cudney, H.H. and Inman, D.J. (2001), "Feasibility of using impedance-based damage assessment for pipeline structures", Earthq. Eng. Struct. D., 30(10), 1463-1474. https://doi.org/10.1002/eqe.72
  35. Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128(4), 469-476. https://doi.org/10.1115/1.2202157
  36. Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
  37. Park, J.H., Huynh, T.C. and Kim, J.T. (2015), "Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder", Smart Struct. Syst., 15(4), 1159-1175. https://doi.org/10.12989/sss.2015.15.4.1159
  38. Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2009), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", Struct. Health Monit., 8(1), 71-82. https://doi.org/10.1177/1475921708094792
  39. Park, S., Yun, C.B., Roh, Y. and Lee, J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  40. Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13(1), 20-29. https://doi.org/10.1088/0964-1726/13/1/003
  41. Shen, D. (2009), "Piezoelectric energy harvesting devices for low frequency vibration applications", Ph.D. Thesis, Department of Materials Engineering, Auburn University, Alabama.
  42. Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9(4), 533-542. https://doi.org/10.1088/0964-1726/9/4/317
  43. Stubbs, N. and Osegueda, R. (1990), "Global non-destructive damage evaluation in solids", Int. J. Anal. Exp. Modal Anal., 5(2), 67-79.
  44. Sun, F.P., Chaudhry Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117
  45. Xu, Y.G. and Liu, G.R. (2002), "A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches", J. Intel. Mat. Syst. Str., 13(6), 389-396. https://doi.org/10.1177/104538902761696733
  46. Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intel. Mat. Syst. Str., 12(10), 709-718. https://doi.org/10.1177/104538901320560355

Cited by

  1. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665x/aa931b
  2. Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.069