References
- P. Marshall, Austenitic Stainless Steels, Microstructure and Properties, Elsevier, London, 1984.
- S. Roychowdhury, V. Kain, M. Gupta, R.C. Prasad, IGSCC crack growth in simulated BWR environment-effect of nitrogen content in non-sensitised and warm rolled austenitic stainless steel, Corros. Sci. 53 (2011) 1120-1129. https://doi.org/10.1016/j.corsci.2010.12.012
- H.B. Li, Z.H. Jiang, Y. Cao, Z.R. Zhang, Fabrication of high nitrogen austenitic stainless steel with excellent mechanical and pitting corrosion properties, Int. J. Miner. Metall. Mater. 16 (2009) 387-392. https://doi.org/10.1016/S1674-4799(09)60069-8
- G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, T. Maki, Effect of nitrogen on corrosion behavior of 28Cr-7Ni duplex and microduplex stainless steel in air-saturated 3.5wt% NaCl solution, Corros. Sci. 48 (2006) 137-153. https://doi.org/10.1016/j.corsci.2004.11.017
-
Y.S. Kim, The influence of nitrogen, and
$NO_3^-$ ,$NO_2^-$ and$NH_4^+$ ions on the corrosion properties and passive film composition of stainless steel, J. Corros. Sci. Soc. Korea 21 (1992) 189-202. - R.C. Newman, T. Shahrabi, The effect of alloyed nitrogen or dissolved nitrate ions on anodic behavior of austenitic stainless steel in hydrochloric acid, Corros. Sci. 27 (1987) 827-838. https://doi.org/10.1016/0010-938X(87)90040-0
- X. Luo, R. Tang, C. Long, Z. Miao, Q. Peng, C. Li, Corrosion behavior of austenitic and ferritic steel in supercritical water, Nucl. Eng. Technol. 40 (2007) 147-154.
- Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Effect of N and C on stress corrosion cracking susceptibility of austenitic Fe18Cr10Mn-based stainless steels, Corros. Sci. 80 (2014) 28-36. https://doi.org/10.1016/j.corsci.2013.09.014
- R.S. Dutta, P.K. De, H.S. Gadiyar, The sensitization and stress corrosion cracking of nitrogen-containing stainless steel, Corros. Sci. 34 (1993) 51-60. https://doi.org/10.1016/0010-938X(93)90258-I
- T.A. Mozhi, W.A.T. Clark, B.E. Wilde, Corrosion behavior of Type 430 stainless steel in formic and acetic acids, Corros. Sci. 27 (1987) 257-288. https://doi.org/10.1016/0010-938X(87)90022-9
- S. Rpychowdhury, V. Kain, S. Neogy, D. Srivastava, G.K. Dey, R.C. Prasad, Understanding the effect of nitrogen in austenitic stainless steel on the intergranular stress corrosion crack growth rate in high temperature pure water, Acta Mater. 60 (2012) 610-621. https://doi.org/10.1016/j.actamat.2011.09.053
- H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Intergranular corrosion behavior of high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater. 16 (2009) 654-660.
- C. Garcia, F. Martin, P. De Tiedra, J.A. Heredero, M.L. Aparicio, Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steel, Corros. Sci. 43 (2001) 1519-1539. https://doi.org/10.1016/S0010-938X(00)00165-7
- ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM International, Philadelphia, 2013.
- ASTM E647-13a, Standard Test Methods for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, ASTM International, Philadelphia, 2013.
- ASTM E1382-97, Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, Annual Book of ASTM Standards, ASTM International, Philadelphia, 1997.
- ASME Boiler and Pressure Vessel Code Sec. XI, ASME, New York, 2008.
- R.P. Gangloff, Environmental Cracking - Corrosion Fatigue, ASTM Corrosion Tests and Standards, MNL20, 2nd, Chapter 26, 2005.
- H.P. Seifert, S. Ritter, Environmentally-assisted Cracking in Austenitic Light Water Reactor Structural Materials, PSI Bericht Nr. 09-03, PSI, Switzerland, 2009.
- K.D. Min, B.S. Lee, S.J. Kim, Effects of oxide on fatigue crack growth behavior of Type 347 stainless steel in PWR water conditions, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 960-969. https://doi.org/10.1111/ffe.12290
- J.F. Moulder, W.F. Stickle, P.E. Sobol, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer, Eden Prairie, MN, 1995.
- T.L. Anderson, Fracture Mechanics, Tylor & Francis Group, New York, 2005, pp. 451-473.
- J.M. Lee, Fatigue Crack Growth Behavior of Type 347 Stainless Steels Under Isothermal and Thermo-mechanical Conditions, Master thesis, Korea University, Seoul, Korea, 2008.
- J.M. Lee, J.H. Yoon, M.W. Kim, B.S. Lee, S.I. Kwun, The effects of microstructure and temperature on fatigue crack growth behavior of Type 347 stainless steel, J. Korean Inst. Met. Mater. 45 (2007) 593-601.
- J.C. Newman, W. Elber, Mechanics of Fatigue Crack Closure, ASTM, Philadelphia, 1988, pp. 62-92.
- J.H. Song, Fatigue Crack, Intervision, Korea, 2006, pp. 27-82.
- O.K. Chopra, W.J. Shack, Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, NUREG/CR-6909, ANL-06/08, U.S. NRC, USA, 2007.
- H.C. Cho, Low Cycle Fatigue Behaviors of a Type 316LN Stainless Steel in a High-temperature Deaerated Water, PhD thesis, KAIST, Daejeon, Korea, 2007.
- S. Roychowdhury, V. Kain, M. Gupta, R.C. Prasad, Effect of nitrogen content in sensitized austenitic stainless steel on the crack growth rate in simulated BWR environment, J. Nucl. Mater. 410 (2011) 59-68. https://doi.org/10.1016/j.jnucmat.2010.12.313
- D.A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, New York, USA, 1999.
Cited by
- Weld metal composition and aging influence on metallurgical, corrosion and fatigue crack growth behavior of austenitic stainless steel welds vol.6, pp.10, 2017, https://doi.org/10.1088/2053-1591/ab39ef
- Attenuation Effectiveness of Double Phase Stainless Steel Alloys for Fusion Reactor System vol.956, pp.None, 2020, https://doi.org/10.1088/1757-899x/956/1/012008