References
- W.L. Mudge, Effect of hydrogen on the embrittlement of zirconium and zirconium-tin alloys, Symposium on zirconium and zirconium alloys, ASM, Metals Park, OH, 1953, pp. 146-167.
- C.E. Coleman, D. Hardie, The hydrogen embrittlement of zirconium in slow-bend tests, J. Nucl. Mater. 19 (1966) 1-8. https://doi.org/10.1016/0022-3115(66)90123-1
-
J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-4 plate: part I, influence of microstructure on the hydride embrittlement in Zircaloy-4 at
$20^{\circ}C$ and$350^{\circ}C$ , Metall. Trans. 25A (1994) 1185-1197. - D. Hardie, The influence of the matrix on the hydrogen embrittlement of zirconium in bend tests, J. Nucl. Mater. 42 (1972) 317-324. https://doi.org/10.1016/0022-3115(72)90082-7
- C.J. Simpson, C.E. Ells, Delayed hydrogen embrittlement of Zr-2.5wt% Nb, J. Nucl. Mater. 52 (1974) 289-295. https://doi.org/10.1016/0022-3115(74)90174-3
- D.O. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, Int. Metals Rev. 28 (1983) 92-121.
- R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Mechanisms of hydrogen induced delayed cracking in hydride forming materials, Metall, Trans 8A (1977) 1553-1562.
- S. Sagat, M.P. Puls, SMiRT 17, Paper # G06-4.
- A. McMinn, E.C. Darby, J.S. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, in: G.P. Sabol, G.D. Moan (Eds.), Twelfth International Symposium of Zirconium in the Nuclear Industry, 1354, ASTM STP, 2000, pp. 173-195.
- P. Vizaino, A.D. Banchik, J.P. Abriata, Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery, J. Nucl. Mater. 304 (2002) 96-106. https://doi.org/10.1016/S0022-3115(02)00883-8
- J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (1967) 292-303. https://doi.org/10.1016/0022-3115(67)90047-5
- V. Grigoriev, Parametric study of DHC in fuel cladding, Workshop on hydrogen induced failures, November 17, 2009. Sweden.
- Y.S. Kim, Delayed hydride cracking of spent fuel rods in dry storage, J. Nucl. Mater. 378 (2008) 30-34. https://doi.org/10.1016/j.jnucmat.2008.04.011
- C.E. Coleman, The CANDU experience AECL, history: cause and remedies, Workshop on hydrogen induced failures, November 17, 2009. Sweden.
- F.H. Huang, W.J. Mills, Delayed hydride cracking behavior for zircaloy-2 tubing, Metall. Trans. A 22A (1991) 2049-2060.
- Y.S. Kim, S.C. Kwon, S.S. Kim, Crack growth pattern and threshold stress intensity factor, KIH, of Zr-2.5% Nb alloy with the notch direction, J. Nucl. Mater. 280 (2000) 304-311. https://doi.org/10.1016/S0022-3115(00)00054-4
- D. Yan, R.L. Eadie, The threshold behaviour of delayed hydride cracking in Zr-2.5wt%Nb, Int. J. Pressure Vessels Piping 77 (2000) 167-177. https://doi.org/10.1016/S0308-0161(99)00081-2
- S.-Q. Shi, M.P. Puls, Criteria for fracture initiation at hydrides in zirconium alloys, I: sharp crack tip, J. Nucl. Mater. 208 (1994) 232-242. https://doi.org/10.1016/0022-3115(94)90332-8
- C.E. Coleman, J.F.R. Ambler, Susceptibility of zirconium alloys to delayed hydride cracking, in: A.L. Lowe, G.W. Parry (Eds.), Zirconium in the Nuclear Industry, 633, ASTM STP, 1977, pp. 589-607.
- V. Grigoriev, R. Jakobsson, Delayed hydrogen cracking velocity and J-integral measurements on irradiated BWR cladding, J. ASTM Int. 2 (8) (2005) 12434. https://doi.org/10.1520/JAI12434
- T. Kubo, K. Sakamoto, T. Higuchi, Development of a new technique for the insitu observation of the DHC process under a SEM to measure the crack extension rate in a radial direction of Zry-2 tubes, 2008 Water Reactor Fuel Performance Meeting, October 19-23, 2008. Soul, Korea.
- C.F. Tiffany, J.N. Masters, Applied fracture mechanics, in: W.F. Brown Jr. (Ed.), Fracture Toughness Testing and its Applications, ASTM STP 381, American Society for Testing and Materials, Philadelphia, PA, 1965, pp. 249-277.
- US Nuclear Regulatory Commission, Standard review plan for spent fuel dry storage systems at a general license facility, NUREG-1536, 2009.
- S.-Q. Shi, M.P. Puls, Fracture strength of hydride precipitates in Zr-2.5Nb alloys, J. Nucl. Mater. 275 (1999) 312-317. https://doi.org/10.1016/S0022-3115(99)00132-4
Cited by
- Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses vol.50, pp.7, 2017, https://doi.org/10.1016/j.net.2018.07.001
- Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions vol.52, pp.8, 2020, https://doi.org/10.1016/j.net.2020.01.022