DOI QR코드

DOI QR Code

Synthesis and characterization of three-dimensional monodispersed NiO/NiCo2O4 via Ni3[Co(CN)6]2 PBA nanocubes

Ni3[Co(CN)6]2 PBA 나노큐브를 통한 단분산된 3차원 구조의 NiO/NiCo2O4 제조 및 특성 평가

  • Kwag, Sung Hoon (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Young Hun (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kim, Min Seob (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Chul Woo (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kang, Bong Kyun (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, Dae Ho (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 곽성훈 (성균관대학교 신소재공학과) ;
  • 이영훈 (성균관대학교 신소재공학과) ;
  • 김민섭 (성균관대학교 신소재공학과) ;
  • 이철우 (성균관대학교 신소재공학과) ;
  • 강봉균 (성균관대학교 신소재공학과) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Received : 2017.04.24
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

$NiO/NiCo_2O_4$ nanocubes were successfully synthesized via the calcination process of $Ni_3[Co(CN)_6]_2$ PBAs. The prepared monodispersed $Ni_3[Co(CN)_6]_2$ PBAs were aggregated by 'self-assembly' of the nuclei generated during the synthesis reaction. The self-assembly rate of the particles is affected by the temperature and the amount of surfactant SDBS (sodium dodecylbenzenesulfonate). FESEM analysis shows that monodispersed 200 nm PBA nanocubes are obtained at 0.25 g SDBS and $60^{\circ}C$ temperature. Thermal behavior was confirmed by thermogravimetric-differential thermal analysis (TG-DTA) to determine optimal calcination conditions. Then, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyzes were performed to investigate the morphology and crystallinity of the particles precursors and $NiO/NiCo_2O_4$ nanocubes.

$Ni_3[Co(CN)_6]_2$ PBAs의 하소과정을 통해 단분산된 $NiO/NiCo_2O_4$ 나노큐브를 성공적으로 합성했다. 단분산된 $Ni_3[Co(CN)_6]_2$ PBAs 나노큐브는 수열합성 반응 시 생성된 핵 들의 '자기조립'에 의해 형성된다. 이때 입자의 자기조립 속도는 온도와 계면활성제인 SDBS(Sodiumdodecylbenzenesulfonate)의 양에 의해 영향을 받으며, FESEM 분석을 통하여 SDBS: 0.25 g, 온도: $60^{\circ}C$에서 단분산된 200 nm의 PBA 나노큐브들을 얻을 수 있었다. 최적의 하소 조건을 결정하기 위해 Thermogravimetric-Differential Thermal Analysis(TG-DTA)를 통해 열적 거동을 확인하였다. 그리고 PBA 전구체 및 $NiO/NiCo_2O_4$ 입자의 형상과 결정성을 확인하기 위해 Field emission scanning electron microscopy(FESEM)과 X-ray diffraction(XRD) 분석을 진행하였다.

Keywords

References

  1. D.G. Dmitry and R.A. Caruso, "Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration", Chem. Mater. 16 (2004) 1834.
  2. Y. Su, W. Yang, Q. Li and J.K. Shang, "Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water", Chem. Eng. J. 268 (2015) 270. https://doi.org/10.1016/j.cej.2015.01.070
  3. F.E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt and E. Llobet, "Aerosol-assisted CVD-grown $WO_3$ nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of $H_2S$", ACS Appl. Mater. Interfaces 7 (2015) 6842. https://doi.org/10.1021/acsami.5b00411
  4. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan and S. Yang "High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells", Angew. Chem. 126 (2014) 12779. https://doi.org/10.1002/ange.201405176
  5. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E.I. Rios, H. M. Palmer, C. Greavesc and F. J. Berry, "Cation distribution and magnetic structure of the ferromagnetic spinel $NiCo_2O_4$", J. Mater. Chem. 11 (2001) 3087. https://doi.org/10.1039/b103135j
  6. Y. Zhang, L. Li, H. Su, W. Huang and X. Dong, "Binary metal oxide: advanced energy storage materials in supercapacitors", J. Mater. Chem. A 3 (2015) 43. https://doi.org/10.1039/C4TA04996A
  7. X.Y. Yu, X.Z. Yao, T. Luo, Y. Jia, J.H. Liu and X.J. Huang, "Facile synthesis of urchin-like $NiCo_2O_4$ hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications", ACS Appl. Mater. Interfaces 6 (2014) 3689. https://doi.org/10.1021/am4060707
  8. A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.J. Ahn and G. Wang, "A microwave synthesis of mesoporous $NiCo_2O_4$ nanosheets as electrode materials for lithium-ion batteries and supercapacitors", ChemPhysChem 16 (2015) 169. https://doi.org/10.1002/cphc.201402654
  9. J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen and T. Wang, "Ultrathin porous $NiCo_2O_4$ nanosheet arrays on flexible carbon fabric for high-performance supercapacitors", ACS Appl. Mater. Interfaces 5 (2013) 7405. https://doi.org/10.1021/am4017335
  10. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, "Hierarchical $NiCo_2O_4$ hollow microcuboids as bifunctional electrocatalysts for overall watersplitting", Angew. Chem. Int. Ed. 55 (2016) 6290. https://doi.org/10.1002/anie.201600525
  11. N. Padmanathan and S. Selladurai, "Solvothermal synthesis of mesoporous $NiCo_2O_4$ spinel oxide nanostructure for high-performance electrochemical capacitor electrode", Ionics 19 (2013) 1535. https://doi.org/10.1007/s11581-013-0907-0
  12. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu and C.C. Hu, "A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process", Adv. Mater. 22 (2010) 347. https://doi.org/10.1002/adma.200902175
  13. S.S. Kaye and J.R. Long, "Hydrogen storage in the dehydrated prussian blue analogues $M_3[Co(CN)_6]_2$ (M = Mn, Fe, Co, Ni, Cu, Zn)", J. Am. Chem. Soc. 127 (2005) 6506. https://doi.org/10.1021/ja051168t
  14. H. Li, C. Yang, P. Xue, N. Li, Y. Zhang and J. Wang, "Structural evolution of a metal-organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance", CrystEngComm. 19 (2017) 64. https://doi.org/10.1039/C6CE01995A
  15. Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu and Y. Qian, "Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts", Adv. Mater. 15 (2003) 1946. https://doi.org/10.1002/adma.200305663
  16. S.D. Seul, J.K. Lim, J.M. Lim, J.B. Kwon and N.W. Lee, "A study on the environmental fraternized preparation of inorganic/organic core-shell binder", Journal of the KIIS 19 (2004) 81.
  17. C. Yu, J. Yang, C. Zhao, X. Fan, G. Wang and J. Qiu, "Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nanostructured carbon", Nanoscale 6 (2014) 3097. https://doi.org/10.1039/C3NR05477B
  18. G. Huang, L. Zhang, F. Zhang and L. Wang, "Metalorganic framework derived $Fe_2O_3@NiCo_2O_4$ porous nanocages as anode materials for Li-ion batteries", Nanoscale 6 (2014) 5509. https://doi.org/10.1039/C3NR06041A
  19. B.K. Kang, M.H. Woo, J.Y. Lee, Y.H. Song, Z. Wang, Y. Guo, Y. Yamauchi, J.H. Kim, B.K. Lim and D.H. Yoon, "Mesoporous Ni-Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions", J. Mater. Chem. A 5 (2017) 4320. https://doi.org/10.1039/C6TA10094E
  20. A. Opalinska, I. Malka, W. Dzwolak, T. Chudoba, A. Presz and W. Lojkowski, "Size-dependent density of zirconia nanoparticles", Beilstein J. Nanotechnol. 6 (2015) 27. https://doi.org/10.3762/bjnano.6.4