References
- Abasi, N., Javadi, A.A. and Bahramloo, R. (2012), "Prediction of compression behaviour of normally consolidated fine grained soils", World Appl. Sci. J., 18(1), 6-14.
- Akayuli, C.F.A. and Ofosu, B. (2013), "Empirical model for estimating compression index from physical properties of weathered Birimianphyllites", E J. Geotech. Eng., 18(Z), 6135-6144.
- Alavi, A.H., Gandomi, A.H., Mollahassani, A., Heshmati, A.A. and Rashed, A. (2010), "Modeling of maximum dry density and optimum moisture contents of stabilized soil using artificial neural networks", J. Plant Nutr. Soil Sci., 173(3), 368-379. https://doi.org/10.1002/jpln.200800233
- Bandopadhayay, K. and Bhattacharjee, S. (2010), "Indirect tensile strength test of stabilized fly ash", Ind. Geotech. Conf. Mumbai, 1, 279-282.
- Bhatt, S. and Jain, P.K. (2014), "Prediction of California bearing ratio of soils using artificial neural networks", Am. J. Res. Sci. Technol. Eng. Math., 8(2), 156-161.
- Borowiec, A. and Wilk, K. (2014), "Prediction of consistency parameters of fen soils by neural networks", Comput. Assist. Meth. Eng. Sci., 21(1), 67-75.
- Castro, L.N. (2007), "Fundamentals of natural computing: A review", Phys. Life Rev., 4, 1-36. https://doi.org/10.1016/j.plrev.2006.10.002
- Chau, K.W., Wu, C.L. and Li, Y.S. (2005), "Comparison of several flood forecasting models in Yangtze river", J. Hydrol. Eng., 10(16), 485-491. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:6(485)
- Chore, H.S. and Vaidya, M.K. (2015), "Strength characterization of fiber reinforced cement-fly ash mixes", J. Geosynth. Ground Eng., 1(4), 30. https://doi.org/10.1007/s40891-015-0032-4
- Das, S.K. and Sabat, A.K. (2008), "Using neural networks for prediction of some properties of fly ash", E J. Geotech. Eng., 13(D), 1-13.
- Das, S.K., Samui, P. and Sabat, A.K. (2011), "Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil", Geotech. Geol. Eng., 29(3), 329-342. https://doi.org/10.1007/s10706-010-9379-4
- Dutta, R.K. and Rao, G.V. (2007), "Regression model for predicting the behaviour of sand reinforced with waste plastic", Turk. J. Eng. Environ. Sci., 31(2), 119-126.
- Dutta, R.K. and Rao, G.V. (2009), "Regression model for predicting the behaviour of sand mixed with tire chip", J. Geotech. Eng., 3(1), 51-63. https://doi.org/10.3328/IJGE.2009.03.01.51-63
- Ellis, G.W., Yao, C., Zhao, R. and Penumadu, D. (1995), "Stress-strain modelling of sands using artificial neural networks", ASCE J. Geotech. Eng., 121(5), 429-435. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(429)
- Ghaboussi, J. and Sidarta, D.E. (1998), "New nested adaptive neural networks (NANN) for constitutive modelling", Comput. Geotech., 22(1), 29-52. https://doi.org/10.1016/S0266-352X(97)00034-7
- Goh, A.T.C. (1995), "Modelling soil correlations using neural networks", ASCE J. Comput. Civil Eng., 9(4), 275-278. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(275)
- Haykin, S. (2009), Neural Networks: A Comprehensive Foundation, 8th Edition, Pearson Prentice Hall, India.
- Hubick, K.T. (1992), Artificial Neural Networks in Australia, Department of Industry, Tech and Commerce, Commonwealth of Australia, Canberra.
- IS: 2720 (1965), Determination of Moisture Content Dry Density Relation Using Light Compaction, Part VII, Bureau Indian Standards, New Delhi, India.
- IS: 2720 (1973), Methods of Test for Soils: Determination of Unconfined Compression Strength, Part X, Bureau Indian Standards, New Delhi, India.
- IS: 4031 (1988), Methods of Physical Tests for Hydraulic Cement, First Rev, Bureau Indian Standards, New Delhi, India.
- Isik, N.S. (2009), "Estimation of swell index of fine grained soils using regression equations and artificial neural networks", J. Sci. Res. Essay, 4(10), 1047-1056.
- Khan, S.Z., Suman S., Pavani, M. and Das, S.K. (2015), "Prediction of the residual strength of clay using functional networks", Geosci. Front., 7(1), 67-74. https://doi.org/10.1016/j.gsf.2014.12.008
- Kurup, P.U. and Dudani, N.K. (2002), "Neural networks for profiling stress history of clays from PCPT data", ASCE J. Geotech. Geo-Environ. Eng., 128(7), 569-579. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(569)
- Najjar, Y.M., Basheer, I.A. and Naouss, W.A. (1996), "On the compaction characteristics by nueonets", Comput. Geotech., 18(3), 167-187. https://doi.org/10.1016/0266-352X(95)00030-E
- Narendra, B.S., Puvvadi, S., Sundaram, S. and Omkar, S.N. (2006), "Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study", Comput. Geotech., 33(3), 196-208. https://doi.org/10.1016/j.compgeo.2006.03.006
- Ozer, M., Isik, N.S. and Orhan, M. (2008), "Statistical and neural network assessment of the compression index of clay bearing soils", Bullet. Eng. Geo-Environ., 67(4), 537-545. https://doi.org/10.1007/s10064-008-0168-8
- Pennumadu, D. and Zhao, R. (1999), "Triaxial compression behaviour of sand and gravel using artificial neural networks (ANN)", Comput. Geotech., 24(3), 207-230. https://doi.org/10.1016/S0266-352X(99)00002-6
- Penumadu, D. and Jean-Lou, C. (1997), "Geometrical modelling using artificial neural networks", Proceedings of the Artificial Neural Networks for Civil Engineers-Fundamentals and Applications, ASCE, 160-184.
- Shahin, M.A., Jaksa, M.B. and Maier, H.R. (2001), "Artificial neural network applications in geotechnical engineering", Austr. Geomech., 36(1), 49-62.
- Sidarta, D.E. and Ghaboussi, J. (1998), "Constitutive modelling of geo-materials from non-uniform material tests", Comput. Geotech., 22(10), 53-71. https://doi.org/10.1016/S0266-352X(97)00035-9
- Srinivasulu, S. and Jain, A. (2006), "A comparative analysis of training methods for artificial neural network rainfall-runoff models", Appl. Soft Comput., 6(3), 295-306. https://doi.org/10.1016/j.asoc.2005.02.002
- Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash using artificial neural networks and regression technique", J. Sci. Res. Essay, 4(4), 289-297.
- Sulewska, M.J. (2011), "Applying artificial neural networks for the analysis of geotechnical problems", J. Comput. Assist. Meth. Eng. Sci., 18, 231-241.
- Suman, S., Mahmaya, M. and Das, S.K. (2016), "Prediction of maximum dry density and unconfined compressive strength of cement stabilized soil using artificial intelligence techniques", J. Geosynth. Ground Eng., 2(2), 11. https://doi.org/10.1007/s40891-016-0051-9
- Viji, V.K., Lissy, K.F., Shobha, C. and Benny, M.A. (2013), "Predictions on compaction characteristics of fly ashes using regression analysis and artificial neural network analysis", J. Geotech. Eng., 7(3), 282-292. https://doi.org/10.1179/1938636213Z.00000000036
- Willmott, C.J. and Matsuura, K. (2005), "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance", Clim. Res., 30(1), 79-82. https://doi.org/10.3354/cr030079
- Yildirim, B. and Gunaydin, O. (2011), "Estimation of California bearing ratio by using soft computing systems", Exp. Syst. Appl., 38(5), 6381-6391. https://doi.org/10.1016/j.eswa.2010.12.054
- Yoon, G.L. and Kim, B.T. (2004), "Regression analysis of compression index for Kwangyang marine clay", KSCE J. Civil Eng., 10(6), 415-418. https://doi.org/10.1007/BF02823980
- Yoon, G.L., Kim, B.T. and Jeon, S.S. (2004), "Empirical correlations of compression index for marine clay from regression analysis", Can. Geotech. J., 41(6), 1213-1221. https://doi.org/10.1139/t04-057
Cited by
- Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2017, https://doi.org/10.12989/csm.2019.8.6.523
- Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR vol.5, pp.2, 2017, https://doi.org/10.12989/acd.2020.5.2.195
- Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review vol.38, pp.7, 2017, https://doi.org/10.1108/ec-10-2020-0576
- Artificial Intelligence for Prediction of Physical and Mechanical Properties of Stabilized Soil for Affordable Housing vol.11, pp.16, 2021, https://doi.org/10.3390/app11167503