DOI QR코드

DOI QR Code

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G. (Department of Strength of Materials and Concrete Structures, Kielce University of Technology)
  • 투고 : 2017.02.08
  • 심사 : 2017.04.14
  • 발행 : 2017.07.25

초록

This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

키워드

참고문헌

  1. Bachmann, H. (1995), Vibration Problems in Structures: Practical Guidelines, Birkhauser, Basel, Boston, Berlin.
  2. Biliszczuk, J. and Barcik, W. (2006), "Mosty podwieszone w Polsce: Historia, stan obecny i perspektywy rozwoju", Geoinzynieria: Drogi, Mosty, Tunele, 4, 60-65.
  3. Biliszczuk, J., Machelski, C., Onysyk, J., Wegrzyniak, M. and Prabucki, P. (2011), "Kladki dla pieszych jako punkty orientacyjne na autostradzie, Inzynieria i Budownictwo, 57(11), 643-648.
  4. Biliszczuk, J., Machelski, C., Onysyk, J., Sadowski, K. and Szczepanski, J. (2001), "Kladka dla pieszych o stalowej konstrukcji podwieszonej w kielcach", Inzynieria i Budownictwo, 57(9), 498-501.
  5. Caicedo, J.M., Dyke, S.J., Moon, S.J., Bergman, L.A., Turan, G. and Hague, S. (2003), "Phase II benchmark control problem for seismic response of cable-stayed bridges", Struct. Contr. Health Monitor., 10(3-4), 137-168.
  6. Chen, Z., Cao, H. and Zhu, H. (2013), "An iterative calculation method for suspension bridge's cable system based on exact catenary theory", Baltic J. Road Bridge Eng., 8(3), 196-204. https://doi.org/10.3846/bjrbe.2013.25
  7. Dyke, S.J., Caicedo, J.M., Turan, G., Bergman, L.A. and Hague, S. (2003), "Phase I benchmark control problem for seismic response of cable-stayed Bridges", J. Struct. Eng., 129(7), 857-872. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(857)
  8. Fuzier, J.P. and Lacroix, R. (1995), "Surveillance programme for stay cables (example of Normandy bridge)", Proceedings of the Extending the Lifespan of Structures, IABSE Symposium, San Francisco, U.S.A., August.
  9. Glowczak, W. (2003), "Wiszace i Podwieszone Kladki w Poludniowej Malopolsce. Monografia. Projektowanie, Budowa i Estetyka Kladek Dla Pieszych", Wydawnictwo Katedry Budowy Mostow i Tuneli Politechniki Krakowskiej, Krakow, Poland.
  10. Janjic, D., Pircher, M. and Pircher H. (2003), "Optimization of cable tensioning in cable-stayed bridges, J. Bridge Eng., 8(3), 131-137. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:3(131)
  11. Juozapaitis, A., Kliukas, R., Sandovic, G., Lukoseviciene, O. and Merkevicius, T. (2013), "Analysis of modern three-span suspension bridges with stiff in bending cables", Baltic J. Road Bridge Eng., 8(3), 205-211. https://doi.org/10.3846/bjrbe.2013.26
  12. Kiisa, M., Idnurm, J. and Idnurm, S. (2012), "Discrete analysis of elastic cables", Baltic J. Road Bridge Eng., 7(2), 98-103. https://doi.org/10.3846/bjrbe.2012.14
  13. Kossakowski, P.G. (2012), "The numerical modeling of failure of S235JR steel using gurson-tvergaard-Needleman material model", Roads and Bridges, 11(4), 295-310.
  14. Kossakowski, P.G. (2013), "Fatigue strength of an over one hundred year old railway bridge", Baltic J. Road Bridge Eng., 8(3), 166-173. https://doi.org/10.3846/bjrbe.2013.21
  15. Kossakowski, P.G. (2014), "Stress Modified Critical Strain criterion for S235JR steel at low initial stress triaxiality", J. Theoret. Appl. Mech., 52(4), 995-1006.
  16. Kossakowski, P.G. (2015), "Microstructural failure criteria for S235JR steel subjected to spatial stress states", Arch. Civil Mech. Eng., 15(1), 195-205. https://doi.org/10.1016/j.acme.2014.02.008
  17. Lozano-Galant, J.A., Ruiz-Ripoll, L., Paya-Zaforteza, I. and Turmo, J. (2014), "Modifications of the stress-state of cable-stayed bridges due to staggered construction of their superstructure", Baltic J. Road Bridge Eng., 9(4), 241-250. https://doi.org/10.3846/bjrbe.2014.30
  18. Nazarian, E., Ansari, F., Zhang, X. and Taylor, T. (2016), "Detection of tension loss in cables of cable-stayed bridges by distributed monitoring of bridge deck strains", J. Struct. Eng., 142(6), 04016018.
  19. PN-82/S-10052 (1982), Bridges-Steel structures-Design.
  20. PN-85/S-10030 (1985), Bridges-Loads.
  21. PN-90/B-03000 (1990), Building Design-Static Calculations.
  22. PN-EN 10025-2 (2007), Hot Rolled Products of Structural Steels-Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels.
  23. Post-Tensioning Institute (2001), Recommendations for Stay Cable Design, Testing and Installation. PTI Guide Specification, 4th Edition, PTI, Phoenix, AZ, U.S.A.
  24. PrEN 10138-3 (2000), Prestressing Steels-Part 3: Strand.
  25. Recupero, A. and Granata, M.F. (2015), "A mixed approach for determination of initial cable forces in cable-stayed bridges and the parameters variability", Baltic J. Road Bridge Eng., 10(2), 141-150. https://doi.org/10.3846/bjrbe.2015.18
  26. Serdjuks, D., Rocens, K. and Pakrastins, L. (2008), "Hybride composite cable with an increased specific strength for tension structures", Baltic J. Road Bridge Eng., 3(3), 129-136. https://doi.org/10.3846/1822-427X.2008.3.129-136
  27. Setra (2002), Cable Stays: Recommendations of French Interministerial Commission on Prestressing, Setra, Bagneux Cedex, France.
  28. Straupe, V. and Paeglitis, A. (2012), "Analysis of interaction between the elements in cable-stayed bridge", Baltic J. Road Bridge Eng., 8(2), 84-91.
  29. Straupe, V. and Paeglitis, A. (2013), "Analysis of geometrical and mechanical properties of cable-stayed bridge", Proc. Eng., 57, 1086-1093. https://doi.org/10.1016/j.proeng.2013.04.137
  30. Sun, Z.K., Li, G.M. and Geng, S.H. (2013), Study on Stayed-Cable Health Monitoring, Springer, Berlin, Heidelberg, Germany.
  31. Vejrum, T. and Nielsen, L.L. (2014), Cable-Stayed Bridges, CRC Press, Boca Raton, London, New York.
  32. VSL International (1984), VSL Stay Cables for Cable-Bridges, VSL International Ltd., Berne, Switzerland.
  33. Wang, P.H., Tseng, T.C. and Zheng, H.N. (2004), "Analysis of cable-stayed bridges during construction by cantilever methods", Comput. Struct., 82(4-5), 329-346. https://doi.org/10.1016/j.compstruc.2003.11.003