DOI QR코드

DOI QR Code

CFD를 이용한 테일러 반응기의 3차원 유동해석

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics

  • 권승예 (동국대학교 원자력.에너지시스템공학과) ;
  • 이승호 (연세대학교 화공생명공학과) ;
  • 전동협 (동국대학교 기계시스템공학과)
  • Kwon, Seong Ye (Dept. of Nuclear.Energy System Engineering, Dongguk Univ.) ;
  • Lee, Seung-Ho (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Jeon, Dong Hyup (Dept. of Mechanical System Engineering, Dongguk Univ.)
  • 투고 : 2017.05.10
  • 심사 : 2017.06.06
  • 발행 : 2017.08.10

초록

테일러 반응기에서 일어나는 유동의 변화를 전산유체역학을 이용하여 3차원 유동해석을 수행하였다. 테일러 유동은 레이놀즈 수의 증가에 따라 5개의 영역(순환 쿠에트 유동(CCF), 테일러 와류 유동(TVF), 물결 와류 유동(WVF), 변조 물결 와류 유동(MWVF), 난류 테일러 와류 유동(TTVF))으로 나뉘어지며, 각각의 영역에서의 유동 특성을 알아보았다. 각각의 영역에서 와류의 형상, 개수, 길이 등에 차이를 나타나며 바이패스 흐름에도 영향을 줌을 확인하였다. 그 결과 TVF, WVF, MWVF, TTVF 영역에서 테일러 와류가 발생하였다. 테일러 와류의 개수는 TVF 영역에서 가장 많으며 TTVF 영역에서 가장 적게 관찰되었다. 수치해석모델의 검증을 위하여 실험결과와 비교하였고, 실험결과 대비 해석결과가 잘 일치함을 나타내었다.

We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.

키워드

참고문헌

  1. G. Taylor, Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. Lond. A, 223, 289-343 (1923). https://doi.org/10.1098/rsta.1923.0008
  2. R. J. Donnelly, Taylor-Couette flow: The early days, Phys. Today, 44, 32-39 (1991).
  3. E. L. Koschmieder, Benard Cells and Taylor Vortices, 219-225, Cambridge University Press, UK (1993).
  4. D. Coles, Transition in circular Couette flow, J. Fluid Mech., 21, 385-425 (1965). https://doi.org/10.1017/S0022112065000241
  5. S. Chandrasekhar, The stability of spiral flow between rotating cylinders, Proc. R. Soc. Lond. A, 265, 188-197 (1962). https://doi.org/10.1098/rspa.1962.0003
  6. M. Nemri, E. Climent, S. Charton, J. Y. Lanoe, and D. Ode, Experimental and numerical investigation on mixing and axial dispersion in Taylor-Couette flow patterns, Chem. Eng. Res. Des., 91, 2346-2354 (2012).
  7. P. S. Marcus, Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave, J. Fluid Mech., 146, 65-13 (1984). https://doi.org/10.1017/S0022112084001774
  8. H. S. Dou, B. C. Khoo, and K. S. Yeo, Instability of Taylor-Couette flow between concentric rotating cylinders, Int. J. Therm. Sci., 47, 1422-1435 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.12.012
  9. Y. Zhang, L. Xu, and D. Li, Numerical computation of end plate effect on Taylor vortices between rotating conical cylinders, Commun. Nonlinear Sci. Numer. Simul., 17, 235-241 (2011).
  10. G. Li, X. Yang, and H. Ye, CFD simulation of shear flow and mixing in a Taylor-Couette reactor with variable cross-section inner cylinders, Powder Technol., 280, 53-66 (2015). https://doi.org/10.1016/j.powtec.2015.04.050
  11. X. Gao, B. Kong, M. Ramezani, M. Olsen, and R. D. Vigil, An adaptive model for gas-liquid mass transfer in a Taylor vortex reactor, Int. J. Heat Mass Transf., 91, 433-445 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.125
  12. X. Gao, B. Kong, and R. D. Vigil, CFD investigation of bubble effects on Taylor-Couette flow patterns in the weakly turbulent vortex regime, Chem. Eng. J., 270, 508-518 (2015). https://doi.org/10.1016/j.cej.2015.02.061
  13. S. H. Lee, G. H. Sim, and D. H. Jeon, Numerical study on fluid flow characteristics in Taylor reactor using computational fluid dynamics, Trans. Korean Soc. Mech. Eng. B, 40, 9-19 (2016).
  14. S. T. Wereley and R. M. Lueptow, Spatio-temporal character of non-wavy and wavy Taylor-Couette flow, J. Fluid Mech., 364, 59-80 (1998). https://doi.org/10.1017/S0022112098008969
  15. Y. Zhang, L. Xu, and D. Li, Numerical computation of end plate effect on Taylor vortices between rotating conical cylinders, Commun. Nonlinear Sci. Numer. Simul., 17, 235-241 (2011).