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ABSTRACT. In this paper, we defined the admissible canal surfaces with isotropic radious
vector in Galilean 3-spaces an we obtained their position vectors. Also we gave some
important results by using their Gauss and mean curvatures.

1. Introduction

A canal surface is defined as envelope of a one-parameter set of spheres, centered
at a spine curve v (s) with radius r(s). When r(s) is a constant function, the canal
surface is the envelope of a moving sphere and is called a pipe surface. Canal
surfaces have wide applications in CAGD, such as construction of blending surfaces,
shape reconstruction, transition surfaces between pipes, robotic path planning, etc.
. An envelope of a 1-parameter family of surfaces is constructed in the same way
that we constructed a 1—parameter family of curves.The family is described by a
differentiable function F'(x,y,z,A) = 0, where A is a parameter.When A\ can be
eliminated from the equations

F(z,y,2,A) =0
and
OF(z,y,2,7) _
O\ o

we get the envelope, which is a surface described implicitly as G(z,y, z) = 0. For
example, for a 1-parameter family of planes we get a develople surface([1], [2], [3],
[5], [7] and [9]).

A general canal surface is an envelope of a 1-parameter family of surface. The
envelope of a 1-parameter family s — S?2 (s) of spheres in IR? is called a general
canal surface [3]. The curve formed by the centers of the spheres is called center
curve of the canal surface. The radius of general canal surface is the function r
such that 7(s) is the radius of the sphere S? (s). Suppose that the center curve of
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a canal surface is a unit speed curve « : I — IR3. Then the general canal surface
can be parametrized by the formula

(1.1) C(s,t)=a(s)—R(s)T —Q(s)cos(t) N + Q (s)sin (t) B,
where
R(s) =r(s)r'(s),
Q (s) = £r(s)\/1 —r'(s)2.

All the tubes and the surfaces of revolution are subclass of the general canal surface.

Theorem 1.1([3]). Let M be a canal surface. The center curve of M is a straight
line if and only if M is a surface of revolution for which no normal line to the
surface is parallel o the axis of revolution. The following conditions are equivalent
for a canal surface M:

i. M is a tube parametrized by (1.1);
ii. the radius of M is constant;

iii. the radius vector of each sphere in family that defines the canal surface M
meets the center curve orthogonally.

2. Canal Surfaces in Galilean Space

The Galilean space G3 is a Cayley-Klein space defined from a 3-dimensional
projective space P(R3) with the absolute figure that consists of an ordered triple
{w, f, I}, where w is the ideal (absolute) plane, f the line (absolute line) in w and I
the fixed elliptic involution of points off. We introduce homogeneous coordinates in
G5 in such a way that the absolute plane w is given by x¢ = 0, the absolute line f
by 29 = #1 = 0 and the elliptic involution by (0:0: 29 : z3) — (0: 0: x5 : —x2).
With respect to the absolute figure, there are two types of lines in the Galilean
space, isotropic lines which intersect the absolute line f and non-isotropic lines
which do not. A plane is called Euclidean if it contains f, otherwise it is called
isotropic. In the given affine coordinates, isotropic vectors are of the form (0,y, z),
whereas Euclidean planes are of the form « = k, k € R.

The scalar product in Galilean space G5 is defined by

| aqby, if a1 #0Vb #0,
g(A,B){ a2b2—|—a3b3, Zf 0,120/\1)1:07

where A = (a1,a2,a3) and B = (b1 b2, b3) . The Galilean cross product is defined by
0 €y €3

ANg, B= | a1 a2 a3z |, if a1#0 Vb #0.
b1 by b3
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The unit Galilean sphere is defined by
S:={XeGs| g(X.X)=5Fr"}.

An admissible curve o : I € R — G3 in the Galilean space G3 which parame-
terized by the arc length s defined by

(2.1) a(s) = (s,y(s), 2(s)),

where s is a Galilean invariant and the arc length on «. The curvature k(s) and
the torsion 7(s) are defined by

(2_2) H(S) — \/(y//(s))2 + (Z//(S))Q ’ T(l‘) _ det, (a’(s);ig;/s()s)’ 0/”(8))

The orthonormal frame in the sense of Galilean space G3 is defined by

(2.3) T(s) = o(s) = (Ly/(s).2(5)),
N(s) = %@,y«s),/(s)),
B(s) = %(o,—z'%s),y"(s)).

The vectors T, N and B in (2.3) are called the vectors of the tangent, principal
normal and the binormal line of «, respectively. They satisfy the following Frenet
equations

(2.4) T'=kN,N =7B, B = —7N.
A C"—surface M, r > 1, immersed in the Galilean space, x: U — M, U C R?,
x(u, v) = (z(u,v),y(u,v), 2(u, v)),
has the following first fundamental form
I = (g1du + g2dv)? + €(hy1du® + 2hiadudv + hoydv?),

where the symbols g; = x; and h;; = ¢ (X;,X;) stand for derivatives of the first
coordinate function x(u,v) with respect to u,v and for the Euclidean scalar product
of the projections Xy of vectors x; onto the yz—plane, respectively. Furthermore,

. 0, if direction du : dv is non-isotropic,
| 1, if direction du : dv is isotropic.

In every point of a surface there exists a unique isotropic direction defined by
gi1du + godv = 0. In that direction, the arc length is measured by

ds* = hyidu® + 2hiadudv 4 hoodv?
1
= o) {hu (92)” — 2h12g1g2 + hao (91)2} dv®
g1

2

|14
= (gl)dezv 9 7é 0,
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where ) )
h o x5 Boro — 1T Toro — 7
1= e 125~ 125 e
ox ox
2 2
T = —, To=—, W?*=(xox3 —2x1X2)".
ou’ ov’ ( )

A surface is called admissible if it has no Euclidean tangent planes. Therefore, for
an admissible surface g1 # 0 or g # 0 holds. An admissible surface can always
locally be expressed as z = f(x,y).

The Gaussian K and mean curvature H are C"~2-functions, r > 2, defined by

K

_ Ly1Loy — L3, g (92)2 L1 — 2g192L12 + (91)2 Loy
Wz e ’

where

T1Xii — TiiX
Lz‘jzg(l”xl”l’n>’ zy =g #0.

The unit normal vector n given by an isotropic vector is defined by
X1 Agg X2 1

W = W(O’ —T221 + T122, T2Y1 — T1Y2)

([4], [6], [8])-

In Galilean geometry, there are two types sphere depending radious vector
whether it is a isotropic or non-isotropic. Spheres with non-isotropic radious vec-
tor are Euclidean circles in yoz-plane and spheres with isotropic radious vector are
parallel planes such as x = +r. We denote the Euclidean circles by S1 (s).

Definition 2.1. The envelope of a 1-parameter family s — S1(s) of the circles in
(3 is called a canal surface in Galilean 3-space. The curve formed by the centers of
the Euclidean circles is called center curve of the canal surface. The radius of the
canal surface is the function r such that 7(s) is the radius of the Euclidean circles

Let v (s) be an admissible curve as centered curve and canal surface is a patch
that parametrizes the envelope of Euclidean circles which can be defined as

(2.5) C(s,t) =~v(s)+ v (s,t)T(s)+p(s,t) N (s)+w(s,t)B(s)

with the regularity conditions Cs # 0, C; # 0 and Cs x Cy # 0, where ¢ (s,t) and
w (s,t) are C°°—functions of s and ¢. Since C (s,t) — v (s) is the surface normal of
Si(s) and C (s, t) is non-isotropic then 9 (s,t) = 0 and

(26)  g(Cls,) =7(5),C(s5,8) =7 (5) = @ (5,0)* + w(s,1)" =7 (s)”
and by differentiating (2.6) with respect to s and ¢t we get

(2.7) et (s,t) o (s,t) +wi (s, t)w (s, t) =0,
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(28) Ps ($7t) ¥ (S,t) + ws (Sat) w (S7t) =7 (S) r (5) )
(2'9) g(C(s,t) _'7(3),05 (Sat)) =0,
(2.10) g(C(s,t) =7 (s),Ci(s,1)) =0,

and also we find the funcions ¢ (s,t) and w (s, t) are

©(s,t) =7r(s)cos(t) , w(s,t)=r(s)sin(t)
by using (2.6), (2.7) and (2.8). Thus, we give the following corollary.

Corollary 2.2. Let v (s) be an admissible curve. Then the position vector of canal
surface with isotropic radious vector and centered curve 7 (8) is

(2.11) C(s,t) =7 (s) +7(s)cos(t)N (s) +r (s)sin(t)B (s).

The natural basis {C;, C;} are given by

(212) Cs = T+ {r'cos(t) —rrsin(t)} N + {r'sin(t) + r7cos(t)} B,
C; = —rsin(t)N + rcos(t)B.

From (2.4) and (2.12), the components h;; and g; are

hiy = (' (5))2 +172 (s) 72 (s), hia= r? (s)7(s), hoo = r? (s),
91 = 1, gg = 0

Thus, the first fundamental form of canal surface is
Io = (1 +(r (s))2 + 72 (s) 72 (s)) du® 4 212 (s) 7 () dudv + 12 (s) dv?.

By using (2.4), the second derivations of (2.12)

(13) Cos = {4+ (" —rr*)cos(t) — (2r't + r7')sin(t)} N
+ {7+ r7)cos(t) + (r" —rr?)sin(t)} B
Cy = —rcos(t)N —rsin(t)B
Cst = —(r'sin(t) +r7cos(t))N + (r' cos(t) — r7sin(t))B

and the unit normal vector
7 (s,t) = —cos(t)N (s) — sin(t)B (s)

coefficients L;; are
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L1y = — {k(s)cos(t) + 1" (s) — 7 (s) 72 (s)}, Lio=r(s)7(s), Lao=r(s)
so the second fundamental form is
Ilg = — {n (s)cos(t) + 7" (s) —r(s)T (5)2} du® + 2r (s) 7 (s) dudv + 7 () dv*.

The Gauss curvature and mean curvature of a non-isotropic canal surface in the
Galilean space are given by
" (s) — K (s) cos(t) 1

, H(s,t)= 2 ()’

K (s,t) =

r(s)

In the case K (s,t) = 0, the centered curve has to be planar and there are two K-flat
canal surfaces for r(s) = ¢15 + ¢ and r(s) = ¢. Thus, we conclude the following
cases.

Theorem 2.3. Let M be a canal surface in Galilean 3-space. Then followings are
true.

i. There is no minimal canal surface.

it. The Gauss and mean curvatures of canal surface satisfy the relation
K (s,t) +2H (s,t) {k (s) cos(t) — " (s)} = 0,

itt. M is a K—flat canal surface if and only if M is a elliptic cone and its position
vector s

C(s,t) = (s,(c184 c2)(cgcos(t) F /1 — (e3)?sin(t)
, (18 + c2)(F/1 — (e3)? cos(t) — ez sin(t))),
where ¢1 # 0, ca € IR, c3 € [0,1], see Figure 1(a).

w. M is a K—flat tubular surface if and only if M is a elliptic cyclinder and its
position vector s

C(s,t) = (s, crea cos(t)Fern/1 — (e2)?sin(t), Fer/1 — (c2)? cos(t)—cica sin(t)),
where ¢; € IRT, ¢3 € [0,1], see Figure 1(b).

v. All the tubes are surface with constant mean curvature.

On the other hand, a surface is said to be a Weingarten surface if its Gauss and
mean curvatures satisfy the Jacobi condition ® (H, K) = KyH, — H K = 0. Thus,
we can give also following theorem.
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Theorem 2.4. Let M be a canal surface in Galilean 3-space. Then M is a Wein-
garten surface if and only if M is either a tubular surface or a surface of revolution

co+s co+s
with r(s) = :t03ei( a ) (62( a )—|—1> and r(s) = c18 + c2, where ¢; # 0,
co € IR and c3 € IRT.

Proof. Let us assume that M be a Weingarten surface. Differentiating K (s, t) and
H (s,t) with respect to s and t gives

=
—
»
N~—
ﬁ\
—
»
SN~—
|
z\
—
»
SN~—
3
—
»
=
=
(@)
O
o2}
—
~
=

K (5,) = (80T (8) =17 (5) 77 (5) +

Kt (S,t) =

and

H, (s,1) = —;((‘Z)) H, (s,) = 0.

From the Jacobi equation ® (H, K) = K;H; — H: K, = 0, we get
1 ) 8010 011 62
@ i (s) + (k(8)7" (s) — K (s) 7 (s)) cos(t } sin(t) ¢ =0,
+r"(s) (k ()" (s) — k' (s) 7 (s)) cos(t)

Since {1, sin(t),cos(t)} is linearly independent then

() {r" ()7 (s) =" (s) 1" (s)} = 0O,

k(s) (" (s)r(s) =" (s)1" (5)) = 0,

(14) K (s) (5 (s) 1" (s) = ﬁ/(s)r(s)) 0,
" (s) (k(s)r" (s) =K' (s)r(s)) = O

If x(s) is non-zero constant then from (14)s, r(s) is non-zero constant. If
k(s) = 0 then from (14);, either 7 (s) = ¢18 + ¢5 or

r(s) = £ege () <62<CT> + 1) .

Tt is easy to see that the Jacobi equation ® (H, K) = 0 satisfies in each case of (x (s)
and 7 (s) are non-zero constants), (k(s) =0, and r (s) = ¢18 + ¢2) and (k (s) = 0,

co+s co+s
and r(s) = :|:03e_( “ ) < ( : ) + 1)), for the necessary part. Thus proof is

completed. O
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Figure 1: Some Galilean Canal Surfaces. For (a); ¢; = c2 = 1,¢3 = 1/2, for

(b); c1 =1,c0 =1/2.
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