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Abstract. In this paper, we develop an enhanced Chebyshev collocation method based

on an integration scheme of the generalized Chebyshev interpolations for solving stiff ini-

tial value problems. Unlike the former error embedded Chebyshev collocation method

(CCM), the enhanced scheme calculates the solution and its truncation error based on

the interpolation of the derivative of the true solution and its integration. In terms of

concrete convergence and stability analysis, the constructed algorithm turns out to have

the 7th convergence order and the A-stability without any loss of advantages for CCM.

Throughout a numerical result, we assess the proposed method is numerically more effi-

cient compared to existing methods.

1. Introduction

In this article, we consider a numerical integration scheme for stiff initial value
problems (IVPs) given by ϕ′(t) = f(t, ϕ(t)), t ∈ (t0, tf ]; ϕ(t0) = ϕ0, where
f(t, ϕ(t)) is assumed to satisfy all the necessary conditions for the existence of
a unique solution. The usage of solutions of the stiff IVPs are gradually in-
creased by mathematicians and scientists to simulate many phenomena in astron-
omy, chemical reaction, electrical engineering, computational fluid dynamics, and
so on. (See [2, 3, 4, 5, 8, 14, 16, 18, 19]). It is important to construct an efficient
and stable implicit method for solving the stiff IVPs for the following reasons: (1)
explicit methods designed for non-stiff problems are forced to use very small step
sizes due to a stability constraint and (2) one can choose the step size based only on
accuracy considerations without any consideration on stability constraints provided
the scheme is A-stable.
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The variable time step size is one of important issues of implicit methods. It
is usually obtained by a difference between the numerical solution and an extra
lower order one (usually refer to an estimation of the local truncation error). One
important issue of this pair of method is to reduce overall computational cost. For
example, Radau methods [9] construct the lower order solution using a combination
of the intra step values of the numerical solution without any extra costs for function
evaluations. As another example, the Chebyshev collocation methods [20] calculate
the lower order solution using a two step backward differentiation formula. These
approaches require one more extra function evaluation and one more calculation for
a linear system in each integration step.

One of aims of this article is to develop an efficient scheme to resolve these issues
for which we use elegant properties of the Chebyshev series introduced by Lanczos
[17] for constructing numerical integration schemes and extensively used in an inter-
polation theory and quadrature rules (for example, see [10, 11, 12, 13]). Clenshaw
[6] and Clenshaw and Norton [7] extended the use of Chebyshev series to solving
IVPs. After then, it was extensively studied and used to construct a collocation
method(CM) for solving IVPs (for example, see [6, 7, 21]). We observe that the
authors of [11] have developed an automatic Chebyshev quadrature rule based on
the Fast Fourier Transform(FFT) by using a generalized Chebyshev interpolation.
The motivation of this article is based on the algorithm([11]) for the generalized
Chebyshev interpolation procedure increasing the number of sample points more
moderately than doubling so that all zeros of the lower degree Chebyshev interpo-
lation are contained in those of the higher degree one. Most recently, the authors
developed an error embedded Chebyshev collocation method [15] by using the al-
gorithm for the sample points and the Chebyshev interpolation polynomials for
the solution ϕ, which turns out to have the 6th order convergence and an almost
L-stability.

Our main contribution of this article is to make a new enhanced method for
the algorithm in [15] in terms of both the convergence order and the stability. To
achieve the purposes, the new method couples above mentioned techniques - the
Chebyshev interpolation procedure for the derivative of ϕ instead of the solution
ϕ, which is used in [15], and the collocation method(CM) based on it. We prove
analytically that the suggested algorithm has a convergence order 7 and it is A-
stable using a concrete stability analysis. We show numerically that the number
of integration steps is dramatically reduced and a larger time step size is allowed
regardless of stiffness compared with existing implicit schemes.

This paper is organized as follows. In Sec. 2, we derives a concrete algorithm.
Convergence and stability analysis for the algorithm is given in Sec. 3. In Sec. 4,
we present several numerical results to validate our analysis.

2. Derivation of Algorithm

The aim of this section is to derive a concrete algorithm for an acceralated
error embedded collocation method based on the CM and a generalized Chebyshev
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polynomials. The target problem is described by

(2.1) ϕ′(t) = f(t, ϕ(t)), t ∈ (t0, tf ]; ϕ(t0) = ϕ0,

where f(t, ϕ(t)) is assumed to satisfy all the necessary conditions for the existence of
a unique solution. We assume that two approximations ϕ̃k and ϕk for the solution
ϕ(tk) for all times tk ≤ tm with a given time tm are already calculated, where ϕ̃k
are expressed in terms of the local truncation error ek for the error Ek := ϕ(tk)−ϕk
such that ϕ̃k := ϕk + ek. We then try to find the next approximations ϕ̃m+1 and
ϕm+1 at time tm+1 so that ϕ̃m+1 := ϕm+1 + em+1 with the estimation em+1 for the
local truncation error of Em+1 = ϕ(tm+1)− ϕm+1, where the solution ϕ(t) satisfies
the IVP given by

(2.2) ϕ′(t) = f(t, ϕ(t)), t ∈ [tm, tm+1]; ϕ(tm) = ϕm + Em.

To apply the Chebyshev series, we introduce the change of variable t(s) =
tm + h

2 (1 + s) which changes the computational domain [tm, tm+1] to the reference
domain [−1, 1], where h := tm+1 − tm is the time step size. Then, from (2.2), one
can see that the function ϕ̄(s) := ϕ(t(s)) satisfies the IVP given by

(2.3)

ϕ̄′(s) =
h

2
f
(
t(s), ϕ̄(s)

)
, s ∈ [−1, 1],

ϕ̄(−1) = ϕ(tm) = ϕm + Em.

2.1. Chebyshev interpolation polynomials

For solving the problem (2.3), we begin with introducing the Chebyshev-Gauss
Lobatto (CGL) points such that

(2.4) ηj := cos

(
4− j

4
π

)
, j = 0, · · · , 4.

which are the zeros of the polynomial ω5(s) defined by ω5(s) = T5(s) − T3(s) =
2(s2 − 1)U4(s), where Tk and Uk are the Chebyshev polynomials of the first and
second kind, respectively. Also, we let

(2.5) νj := cos
(( j

4
+

3

8

)
π
)
, j = 0, 1,

which are zeros of the Chebyshev polynomial T2(s)− cos(3π/4) of degree 2, intro-
duced by [10, 11]. Further, let {τj} be a rearrangement of the points ηj and νj
defined by (2.4) and (2.5), respectively, so that

(2.6) −1 = τ0 < τ1 < · · · < τ6 = 1.

From now on, let N be a fixed number which is either 4 or 6. Depending on N ,
let sNj be abscissae defined by

(2.7) sNj :=

{
ηj , N = 4,

τj , N = 6,
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where ηj and τj are defined by (2.4) and (2.6), respectively. We now are ready to
introduce the generalized Chebyshev interpolation polynomials for approximating
the derivative ϕ̄′ by using the abscissae sNj defined by (2.7). Let p4(s) be the
Chebyshev interpolation polynomial of degree 4 given by

(2.8) p4(s) =

4∑′′

k=0

a4kTk(s), s ∈ [−1, 1]

where the coefficients a4k are determined to satisfy the interpolation conditions

(2.9) p4(s
4
j ) = ϕ̄′(s4j ), j = 0, · · · , 4,

and given as follows [11, 13]

(2.10) a4k =
1

2

4∑′′

j=0

ϕ̄′(s4j ) cos
(
ks4j

)
, 0 ≤ k ≤ 4.

Here, the summation symbol with the double prime denotes a sum whose first
and last terms are halved. Also, let p6(s) be the Chebyshev interpolation polynomial
of degree 6 satisfying the interpolation conditions

(2.11) p6(s
6
j ) = ϕ̄′(s6j ), j = 0, · · · , 6.

Then, Hassegawa et. al. [11] proved that p6(s) can be found by using the
Newton form

(2.12) p6(s) = p4(s) +

2∑
k=1

bk

(
T4−k(s)− T4+k(s)

)
,

where the coefficients bk are determined to satisfy the conditions

(2.13) p6(νj) = ϕ̄′(νj), j = 0, 1,

where νj are defined in (2.5). Define a6k by

(2.14) a6k =


a4k, 0 ≤ k < 2,

a4k + b4−k, 2 ≤ k < 4,
a4
4

2 , k = 4,

−bk−4, 4 < k ≤ 6.

By combining (2.13) with (2.12), the Chebyshev interpolation polynomial p6(s)
can be written in term of a6k as follows:

(2.15) p6(s) =

6∑′

k=0

a6kTk(s), s ∈ [−1, 1],
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where the summation symbol with the prime denotes a sum whose first term is
halved. By using the interpolation conditions (2.9) and (2.11), the interpolation
polynomial pN (s) for both (2.8) and (2.15) can be expressed in terms of Lagrange
polynomials of order N , lNk (s) such that

(2.16) lNk (s) :=
qN (s)

(s− tNk )q̇N (sNk )
, qN (s) :=

N∏
j=0

(s− sNj ),

where q̇N (s) = dqN (s)
ds . With the basis function lNk (s) of (2.16), the derivative ϕ̄′(s)

for the solution ϕ̄(s) of (2.3) can be approximated by the Chebyshev interpolation
polynomial pN (s) such that

(2.17) pN (s) =

N∑
k=0

ϕ̄′(sNk )lNk (s) =
h

2

N∑
k=0

f
(
t(sNk ), ϕ̄(sNk )

)
lNk (s)

whose error ρN (s) is given by the relation by

(2.18) ϕ̄′(s) = pN (s) + ρN (s).

2.2. Approximation scheme for solving (2.3)

Now, we are ready to drive an accurate scheme for approximating ϕ(tm+1) =
ϕ̄(1) based on the equations (2.17) and (2.18). Integrating both sides of (2.18) and
combining the result with (2.17) yield the way how the intra-step values ϕ̄(sNk ),
k = 1, · · · , N , are determined by collocating the residual rN (s), which is

(2.19) rN (s) := ϕ̄(s)− ϕ̄(−1)− h

2

N∑
k=0

f
(
t(sNk ), ϕ̄(sNk )

)∫ s

−1

lNk (ξ)dξ.

By using the initial condition of (2.3) and collocating the residual rN (s) of
(2.19) at N -points sNj , j = 1, · · · , N , we have the nonlinear discrete system, for
1 ≤ j ≤ N ,

(2.20) ϕ̄(sNj )− h

2

N∑
k=1

f
(
t(sNk ), ϕ̄(sNk )

)
aNjk = ϕ̃m +

h

2
f
(
t(sN0 ), ϕ̃m

)
aNj0 + rN,m

j ,

where

(2.21)

aNjk :=

∫ sNj

−1

lNk (ξ)dξ,

rN,m
j :=

∫ sNj

−1

ρN (ξ)dξ +
h

2

(
f
(
t(sN0 ), ϕ(tm)

)
− f

(
t(sN0 ), ϕ̃m

))
aNj0.
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Remark 2.1. The quantities rN,m
j in (2.21) can be neglected because (i) ϕ(tm)−ϕ̃m

is the error induced from the previous time interval [tm−1, tm] and is quite small

(see Theorem 3.1), (ii) the first term of rN,m
j is the main part of rN,m

j , which are
the errors induced from the truncation error ρN (s) for the interpolation polynomial
and are quite small (see Theorem 2.1 of [15]).

For convenience, let us define matrix as

(2.22) AN :=
(
aNjk

)
, 1 ≤ j, k ≤ N,

where ajk is defined in (2.21), and vectors as

(2.23)
αN :=

[
αN

1 , · · · ,αN
N

]T
, γN,m :=

[
rN,m
1 , · · · , rN,m

N

]T
,

bN :=
[
aN10, · · · , aNN0

]T
, F (αN ) :=

[
f
(
tm1,α

N
1

)
, · · · , f

(
tmN ,α

N
N

)]T
,

Then, based on Remark 2.1, instead of solving (2.20) for ϕ̄(sNk ), we will ap-
proximate it by αN

k which satisfies the nonlinear discrete Chebyshev collocation
system

(2.24) αN =
h

2
ANF (αN ) + ϕ̃m +

h

2
f(tm, ϕ̃m)bN .

Solving the nonlinear system (2.24), we obtain, in particular, the required ap-
proximation value at the final point on the interval, ϕ(tm+1) = ϕ̄(sNN ) ≈ αN

N .

Recall that the approximation ϕ̃m consists of the approximation ϕm and its trun-
cation error em for ϕ(tm) and Em = ϕ(tm) − ϕm, respectively, and both ϕm and
em are assumed to be already calculated at the previous time tm. Also, observe
that the solution αN

N of (2.24) is dependent of them. Hence, it is needed to find
formulae for both ϕm+1 and em+1, where em+1 must be an approximation for
the error Em+1 = ϕ(tm+1) − ϕm+1. The Newton formula (2.12) between p6(s)
and p4(s) shows that the error ρ4(s) for the Chebyshev interpolation polynomial
p4(s) can be estimated by using the difference between p6(s) and p4(s). There-
fore, if we let ϕm+1 := α4

4, then the Newton formula yields a way how the error
Em+1 := ϕ(tm+1) − ϕm+1 is approximated by subtracting α4

4 from α6
6. Hence, we

would like to propose our algorithm as follows.

(2.25)

{
ϕm+1 = α4

4,

em+1 = α6
6 −α4

4, m ≥ 0,

with initial conditions ϕ0 = ϕ(t0) and e0 = 0.
In the algorithm (2.25), even though the quantity em+1 is an approximation

for the local truncation error of the approximation ϕm+1, one can consider it as
an estimation for the local truncation error for the higher order approximation
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α6
6 = ϕm+1 + em+1 = ϕ̃m+1, which is obtained by adding two equations in (2.25).

So, we will use this estimated error em+1 for the variable time step size. As discussed
in Introduction, comparing to most existing implicit schemes, we perform a different
procedure to obtain the estimation error em+1 and the lower order solution α4

4 ,
which uses the same type of nonlinear equation (2.24) for the higher order solution
α6

6. As a technique for solving the nonlinear system (2.24), we will use the simplified
Newton iteration([9, 15]) and the eigenvalue decomposition for the matrix AN ,
which can be found in [15]. Finally, we note that the scheme is also applicable to a
system of ordinary differential equations of the form

(2.26) ϕ′(t) = f(t,ϕ(t)), t ∈ (t0, tf ]; ϕ(t0) = ϕ0,

where ϕ : Rd → Rd and f : [t0, tf ]× Rd → Rd.

3. Convergence and Stability Analysis

In this section, we will analyze the actual error

Em = ϕ(tm)− ϕ̃m, m = 1, 2, · · ·

between the exact solution ϕ of (2.1) and the approximate solution ϕ̃m obtained by
(2.25). The following convergence analysis can be generalized in a straightforward
way to a high dimension system provided some vector and matrix notations are
applied. We begin this section by introducing functions Gj defined by

(3.1) Gj(x0, · · · , x6) := xj − x0 −
h

2

6∑
k=0

f(t(s6k), xk)a
6
jk, j = 1, · · · , 6,

where h = tm+1 − tm and a6jk are defined by (2.21). Then, for the two solutions

ϕ(t) and α6 of (2.1) and (2.24), respectively, in each interval [tm, tm+1], if we define

(3.2) Φ :=
[
ϕ̄(s60), ϕ̄(s

6
1), · · · , ϕ̄(s66)

]T
, Ψ :=

[
α6

0,α
6
1, · · · ,α6

6

]T
,

where ϕ̄(s6j ) = ϕ(t(s6j )) and α6
0 := ϕ̃m = ϕm + em, then using the two equations

(2.20) and (2.24) and applying the Taylor’s series expansion for Gj(Φ) about the
vector Ψ yield the way how the intra-step errors ϵk := ϕ̄(s6k) − α6

k are determined
by solving the system of equations given by

(3.3)

r6,mj = Gj(Φ) = Gj(Ψ) +
∂Gj

∂x0
Em +

6∑
k=1

∂Gj

∂xk
ϵk,

=
∂Gj

∂x0
Em +

6∑
k=1

∂Gj

∂xk
ϵk, j = 1, · · · , 6,
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where r6,mj is defined by (2.21) and

(3.4)
∂Gj

∂xk
=


δkj −

h

2
a6jkfϕ(t(s

6
k), ξk), k ̸= 0,

−1− h

2
a6j0fϕ(t(s

6
0), ξ0), k = 0,

for some intermediate points ξk between ϕ̄(s6k) and α6
k. By applying the mean value

theorem for the second term of r6,mj in (2.21), we have

(3.5) r6,mj =

∫ s6j

−1

ρ6(ξ)dξ +
h

2
Emfϕ(t(s

6
0), ζ0)a

6
j0,

for some ζ0 between ϕ(tm) and ϕ̃m. For convenience, let us define a matrix and a
vector as

J =
(
Jik

)
, Jjk := a6jkfϕ(t(s

6
k), ξk), 1 ≤ j, k ≤ 6,

g =
[
g1, · · · , g6

]T
=

[∫ s61

−1

ρ6(ξ)dξ, · · · ,
∫ s66

−1

ρ6(ξ)dξ

]T
.

Then, the three equations (3.3), (3.4) and (3.5) gives a linear system

(3.6)
(
I6 −

h

2
J
)
ϵ = Em

(
1+

h

2

(
fϕ(t(s

6
0), ξ0) + fϕ(t(s

6
0), ζ0)

)
b6

)
+ g

for ϵ =
[
ϵ1, · · · , ϵ6

]T
and b6 =

[
a610, · · · , a660

]T
. By letting B = I6 − h

2 J, one can

get

(3.7)
ϵ = B−1

[
Em

(
1+

h

2

(
fϕ(t(s

6
0), ξ0) + fϕ(t(s

6
0), ζ0)

)
b6

)
+ g
]

= B−1Em +
h

2
B−1Em

(
fϕ(t(s

6
0), ξ0) + fϕ(t(s

6
0), ζ0)

)
b6 +B−1g,

where 1 = [1, · · · , 1]T . Note that B is nonsingular for sufficiently small h and there
is a constant C independent of h such that

||B−1|| ≤ ||(I − h

2
J)−1|| ≤ 1

1− h
2 ||J||

≤ C.

Using the fact fϕ is bounded and the theorem of Geometric series for (I6−h
2 J)

−1,
the last component Em+1 of the vector ϵ in (3.7) can be estimated by

(3.8)

{∣∣∣Em+1

∣∣∣ ≤ (1 + Ch
)∣∣∣Em

∣∣∣+Dδ6, m ≥ 0,

E0 = 0,
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for some constants C and D independent of h, where

(3.9) δ6 = max
1≤j≤6

∣∣∣∣∣
∫ s6j

−1

ρ6(ξ)dξ

∣∣∣∣∣ .
Consequently, we get the following convergence theorem.

Theorem 3.1.(Convergence) For the final time tf and sufficiently small time
step size h with mh ≤ tf ,m ≥ 0, the actual error Em can be estimated by

(3.10) |Em| ≤ D(exp(Ctf )− 1)
δ6
h
, m ≥ 0,

where C and D are some constants.

Proof. By mathematical induction, it is easy to show that the difference equation
(3.8) can be solved by

(3.11) |Em| ≤ D
(1 + Ch)m − 1

Ch
δ6, m ≥ 0.

If mh ≤ tf , then 1 + Ch ≤ exp(Ch) and (1 + Ch)m ≤ exp(Cmh) ≤ exp(Ctf ).
Therefore, inequality (3.11) provides the desired result.

Remark 3.2. Combining Theorem 3.1 and Lemma 3.1 of [15], one can see that
the approximation {ϕ̃m} has the convergence of order 7.

It must be noted that the proposed algorithm (2.24) uses the Chebyshev inter-
polation polynomial with the same sample points in [15] for the derivative of the
solution ϕ instead the solution ϕ, which is the main difference with the algorithm
of [15].

For the stability analysis of the algorithm (2.25), we will try Dalquist’s test
problem ϕ′(t) = f(t, ϕ(t)) = λϕ(t). For Dahlquist’s test problem, f(t, ϕ) = λϕ is a
linear function and hence the right-hand side of (2.24) becomes

h

2

(
AN ⊗ Id

)
F (αN ) + 1⊗ ϕ̃m +

h

2
bN ⊗ f(tm, ϕ̃m) =

λh

2
ANαN + ϕ̃m

(
1+

λh

2
bN

)
.

Hence, the discrete Chebyshev collocation system (2.24) applied to Dalquist’s test
problem ϕ′(t) = f(t, ϕ(t)) = λϕ(t) becomes

(3.12)
(
IN − λh

2
AN

)
αN = ϕ̃m

(
1+

λh

2
bN

)
with the unknown αN = [αN

1 , · · · ,αN
N ]T . Thus, by solving the linear system (3.12)

with N = 6, the algorithm (2.25) becomes

(3.13) ϕ̃m+1 = S(λh)ϕ̃m,
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where the stability function S(z) is the last component of the vector
(
I6 −

z
2A6

)−1(
1+ z

2b6

)
.

For the stability function S(z), the stability region of the method is defined by
(see [9, p.16])

Γ := {z ∈ C : |S(z)| < 1}.

When the left-half complex plane is contained in Γ, the method is called A-stable
[9, p.42].

Using a symbolic calculation with Mathematica, the explicit formula for the
stability function S(z) can be obtained as follows.

(3.14) R(z) =
N(z)

D(z)
,

where

N(z) =
(
1,

1

2
,
76 +

√
2

672
,
20 +

√
2

1344
,
130 + 17

√
2

107520
,
38 + 11

√
2

645120
,
2 +

√
2

1290240

)
,

D(z) =
(
1,−1

2
,
76 +

√
2

672
,−20 +

√
2

1344
,
130 + 17

√
2

107520
,−38 + 11

√
2

645120
,− 2 +

√
2

1290240

)
,

where the notation (c0, · · · , ck) means the polynomial
∑k

j=0 cjz
j with respect to z.

The corresponding stability region Γ for S(z) is drawn in Fig. 1. From Fig. 1, it can

-10 -5 0 5 10

-10

-5

0

5

10

Figure 1: Stability Region

be noted that the proposed algorithm (2.25) is A-stable.

4. Numerical Results

In this section, we test Van der Pol problem, which is widely used to give
numerical evidences and the efficiency of a numerical method. It is a nonlinear stiff
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IVP describing the behavior of vacuum tube circuits, proposed by B. Van der Pol
in 1920’s. The problem consists of a system of two equation given by

(4.1)

{
ϕ′1(t) = ϕ2(t),

ϕ′2(t) = ((1− ϕ1(t)
2)ϕ2(t)− ϕ1(t))/ϵ, t ∈ (0, 2]

with initial conditions ϕ1(0) = 2, ϕ2(0) = 0. For numerical comparisons, we
use two implicit methods, Radau5 [9] and CCM46 [15] and denote the proposed
algorithm with ICCM46 simply. The efficiency for each method is measured with
the computational time (cputime) and the number of function evaluations (nfeval)
required to solve each problem. The cputime and nfeval are calculated by varying
relative tolerances (Rtol) and absolute tolerances (Atol). All numerical simulations
are executed with the software Visual Studio 2010 C++ under OS Windows 7. For
numerical simulation, we set the damping parameter ϵ to ϵ = 10−6. The reference
solution at the end of integration interval has been taken from the test set in [1],

ϕ1(2) = 0.1706167732170483× 101, ϕ2(2) = −0.8928097010247975× 100.

We calculate cputime, nfeval, nstep and the relative L2-norm error of nu-
merical solution at the end time corresponding to given tolerance (Rtol,Atol) =
(10−n, 10−n−2), n = 7, 8, 9, 10. The numerical results are displayed in Fig. 2.
Note that the calculated cputime is a average time of execute the numerical scheme
100 times. The Fig. 2 shows that the proposed scheme is more efficient than the
other methods.
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Figure 2: Comparisons of errors with function of CPU time, function of nstep
and function of nfeval by varying tolerances(Rtol,Atol)=(10−n, 10−n−2), n =
7, 8, 9, 10

In Fig. 3, we display the step sizes of different numerical schemes to solve
the Van der Pol Problem with (Rtol,Atol) = (10−7, 10−9). Fig. 3 shows that the
proposed scheme uses much bigger step sizes than those for the other schemes.
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Figure 3: Step size in whole interval(left) and the detailed figures in the stiff
region
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