DOI QR코드

DOI QR Code

Circadian rhythm of melatonin secretion and growth-related gene expression in the tiger puffer Takifugu rubripes

  • Kim, Byeong-Hoon (Marine Science Institute, Jeju National University) ;
  • Hur, Sung-Pyo (Jeju International Marine Science Research & Logistics Center, Korea Institute of Ocean Science & Technology) ;
  • Hur, Sang-Woo (Aquafeed Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Takeuchi, Yuki (Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University) ;
  • Takemura, Akihiro (Department of Chemistry, Biology and Marine Sciences, Faculty of Science, University of the Ryukyus) ;
  • Lee, Young-Don (Marine Science Institute, Jeju National University)
  • Received : 2017.02.12
  • Accepted : 2017.07.20
  • Published : 2017.08.31

Abstract

Somatostatin (SS) and growth hormone-releasing hormone (GHRH) are primary factors regulating growth hormone (GH) secretion in the pituitary. To date, it remains unknown how this rhythm is controlled endogenously, although there must be coordination of circadian manners. Melatonin was the main regulator in biological rhythms, and its secretion has fluctuation by photic information. But relationship between melatonin and growth-related genes (ghrh and ss) is unclear. We investigated circadian rhythms of melatonin secretion, ghrh and ss expressions, and correlation between melatonin with growth-related genes in tiger puffer Takifugu rubripes. The melatonin secretion showed nocturnal rhythms under light and dark (LD) conditions. In constant light (LL) condition, melatonin secretion has similar patterns with LD conditions. ss1 mRNA was high during scotophase under LD conditions. But ss1 rhythms disappeared in LL conditions. Ghrh appeared opposite expression compared with melatonin levels or ss1 expression under LD and LL. In the results of the melatonin injection, ghrh and ss1 showed no significant expression compared with control groups. These results suggested that melatonin and growth-related genes have daily or circadian rhythms in the tiger puffer. Further, we need to know mechanisms of each ss and ghrh gene regulation.

Keywords

References

  1. Ayson FG, Takemura A. Daily expression patterns for mRNAs of GH, PRL, SL, IGF-I and IGF-II in juvenile rabbitfish, Siganus guttatus, during 24-h light and dark cycles. Gen Comp Endocrinol. 2006;149:261-8. https://doi.org/10.1016/j.ygcen.2006.06.006
  2. Bayarri MJ, Munoz-Cueto JA, Lopez-Olmeda JF, Vera LM, De Lama MR, Madrid JA, Sanchez-Vazquez FJ. Daily locomotor activity and melatonin rhythms in Senegal sole (Solea senegalensis). Physiol Behav. 2004;81:577-83. https://doi.org/10.1016/j.physbeh.2004.02.001
  3. Begay V, Falcon J, Cahill GM, Klein DC, Coon SL. Transcripts encoding two melatonin synthesis enzymes in the Teleost pineal organ: circadian regulation in pike and Zebrafish, but not in trout 1. Endocrinology. 1998;139:905-12. https://doi.org/10.1210/endo.139.3.5790
  4. Bertherat J, Bluet-Pajot MT, Epelbaum J. Neuroendocrine regulation of growth hormone. Eur J Endocrinol. 1995;132:12-24. https://doi.org/10.1530/eje.0.1320012
  5. Biswas AK, Seoka M, Ueno K, Yong AS, Biswas BK, Kim YS, Taki K, Kumai H. Growth performance and physiological responses in striped knifejaw, Oplegnathus fasciatus, held under different photoperiods. Aquaculture. 2008;279:42-6. https://doi.org/10.1016/j.aquaculture.2008.04.007
  6. Bredow S, Taishi P, Obel F Jr, Guha-Thakurta N, Krueger JM. Hypothalamic growth hormone-releasing hormone mRNA varies across the day in rats. Neuroreport. 1996;7:2501-6. https://doi.org/10.1097/00001756-199611040-00020
  7. Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol. 2007;151:1-26. https://doi.org/10.1016/j.ygcen.2006.12.010
  8. De Pedro N, Martinez-Alvarez RM, Delgado M. Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. J Pineal Res. 2008;45:32-9. https://doi.org/10.1111/j.1600-079X.2007.00553.x
  9. Forward RB, Tankersley RA, Reinsel KA. Selective tidal stream transport of spot (Leistomus xanthurus Lacepede) and pinfish [Lagodon rhomboides (Linnaeus)] larvae: contribution of circatidal rhythms in activity. J Exp Mar Biol Ecol. 1998;226:19-32. https://doi.org/10.1016/S0022-0981(97)00234-7
  10. Fraser NH, Metcalfe NB, Thorpe JE. Temperature-dependent switch between diurnal and nocturnal foraging in salmon. Pro Royal Soc Lon B. 1993;252:135-9. https://doi.org/10.1098/rspb.1993.0057
  11. Fuentes EN, Valdes JA, Molina A, Bjornsson BT. Regulation of skeletal muscle growth in fish by the growth hormone-insulin-like growth factor system. Gen Comp Endocrinol. 2013;192:136-48. https://doi.org/10.1016/j.ygcen.2013.06.009
  12. Gardi J, Obal F, Fang J, Zhang J, Krueger JM. Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am J Phys. 1999;277:R1339-44.
  13. Guerra-Santos B, Lopez-Olmeda JF, de Mattos BO, Baiao AB, Pereira DSP, Sanchez-Vazquez FJ, Cerqueira RB, Albinati RCBA, Fortes-Silva R. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus). Com Biochem Physiol A Mol Integr Physiol. 2017;204:40-7. https://doi.org/10.1016/j.cbpa.2016.11.006
  14. Gunnarsson S, Imsland AK, Siikavuopio SI, Arnason J, Gustavsson A, Thorarensen H. Enhanced growth of farmed Arctic charr (Salvelinus alpinus) following a short-day photoperiod. Aquaculture. 2012;350:75-81.
  15. Herrero MJ, Martinez FJ, Miguez JM, Madrid JA. Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol B. 2007;177:319-26. https://doi.org/10.1007/s00360-006-0131-6
  16. Hur SP, Takeuchi Y, Esaka Y, Nina W, Park YJ, Kang HC, Jeong HB, Lee YD, Kim SJ, Takemura A. Diurnal expression patterns of neurohypophysial hormone genes in the brain of the threespot wrasse Halichoeres trimaculatus. Comp Biochem Physiol A Mol Integr Physiol. 2011;158:490-7. https://doi.org/10.1016/j.cbpa.2010.12.011
  17. Iigo M, Furukawa K, Hattori A, Ohtani-Kaneko R, Hara M, Suzuki T, Tabata M, Aida K. Ocular melatonin rhythms in the goldfish, Carassius auratus. J Biol Rhythm. 1997;12:182-92. https://doi.org/10.1177/074873049701200209
  18. Ishikawa M, Mizobuchi M, Takahashi H, Bando H, Saito S. Somatostatin release as measured by in vivo microdialysis: circadian variation and effect of prolonged food deprivation. Brain Res. 1997;749:226-31. https://doi.org/10.1016/S0006-8993(96)01163-8
  19. Izquierdo-Claros RM, MDC BLO-A, Arilla-Ferreiro E. Acutely administered melatonin decreases somatostatin-binding sites and the inhibitory effect of somatostatin on adenylyl cyclase activity in the rat hippocampus. J Pineal Res. 2004;36:87-94. https://doi.org/10.1046/j.1600-079X.2003.00100.x
  20. Klein SE, Sheridan MA. Somatostatin signaling and the regulation of growth and metabolism in fish. Mol Cell Endocrinol. 2008;286:148-54. https://doi.org/10.1016/j.mce.2007.08.010
  21. Lee LT, Siu FK, Tam JK, Lau IT, Wong AO, Lin MC, Vaudry H, Chow BK. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates. Proc Natl Acad Sci. 2007;104:2133-8. https://doi.org/10.1073/pnas.0611008104
  22. Luque RM, Park S, Kineman RD. Role of endogenous somatostatin in regulating GH output under basal conditions and in response to metabolic extremes. Mol Cell Endocrinol. 2008;286:155-68. https://doi.org/10.1016/j.mce.2007.12.005
  23. Maitra SK, Chattoraj A, Mukherjee S, Moniruzzaman M. Melatonin: a potent candidate in the regulation of fish oocyte growth and maturation. Gen Comp Endocrinol. 2013;181:215-22. https://doi.org/10.1016/j.ygcen.2012.09.015
  24. McLean E, Devlin RH, Byatt JC, Clarke WC, Donaldson EM. Impact of a controlled release formulation of recombinant bovine growth hormone upon growth and seawater adaptation in coho (Oncorhynchus kisutch) and chinook (Oncorhynchus tshawytscha) salmon. Aquaculture. 1997;156:113-28. https://doi.org/10.1016/S0044-8486(97)00071-9
  25. Moore AF, Menaker M. The effect of light on melatonin secretion in the cultured pineal glands of Anolis lizards. Comp Biochem Physiol A Mol Integr Physiol. 2011;160:301-8. https://doi.org/10.1016/j.cbpa.2011.06.027
  26. Nikaido Y, Ueda S, Takemura A. Photic and circadian regulation of melatonin production in the Mozambique tilapia Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol. 2009;152:77-82. https://doi.org/10.1016/j.cbpa.2008.09.001
  27. Norberg B, Weltzien FA, Karlsen O, Holm JC. Effects of photoperiod on sexual maturation and somatic growth in male Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol B Biochem Mol Biol. 2001;129:357-65. https://doi.org/10.1016/S1096-4959(01)00320-7
  28. Oliveira C, Garcia EM, Lopez-Olmeda JF, Sanchez-Vazquez FJ. Daily and circadian melatonin release in vitro by the pineal organ of two nocturnal teleost species: Senegal sole (Solea senegalensis) and tench (Tinca tinca). Comp Biochem Physiol A Mol Integr Physiol. 2009;153:297-302. https://doi.org/10.1016/j.cbpa.2009.03.001
  29. Peinado MA, Fajardo N, Hernandez G, Puig-Domingo M, Viader M, Reiter RJ, Webb SM. Immunoreactive somatostatin diurnal rhythms in rat pineal, retina and harderian gland: effects of sex, season, continuous darkness and estrous cycle. J Neural Transm. 1990;81:63-72. https://doi.org/10.1007/BF01245446
  30. Qian Y, Yan A, Lin H, Li W. Molecular characterization of the GHRH/GHRH-R and its effect on GH synthesis and release in orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol. 2012;163:229-37. https://doi.org/10.1016/j.cbpb.2012.06.004
  31. Raven PA, Sakhrani D, Beckman B, Neregard L, Sundstrom LF, Bjornsson BT, Devlin RH. Growth and endocrine effects of recombinant bovine growth hormone treatment in non-transgenic and growth hormone transgenic coho salmon. Gen Comp Endocrinol. 2012;177:143-52. https://doi.org/10.1016/j.ygcen.2012.03.002
  32. Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V. Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol. 2006;16:1730-5. https://doi.org/10.1016/j.cub.2006.07.025
  33. Sheridan MA, Hagemeister AL. Somatostatin and somatostatin receptors in fish growth. Gen Comp Endocrinol. 2010;167:360-5. https://doi.org/10.1016/j.ygcen.2009.09.002
  34. Takemura A, Susilo ES, Rahman MD, Morita M. Perception and possible utilization of moonlight intensity for reproductive activities in a lunarsynchronized spawner, the golden rabbitfish. J Exp Zoolog A Comp Exp Biol. 2004;301:844-51.
  35. Taylor JF, Migaud H, Porter MJR, Bromage NR. Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol. 2005;142:169-85. https://doi.org/10.1016/j.ygcen.2005.02.006
  36. Very NM, Knutson D, Kittilson JD, Sheridan MA. Somatostatin inhibits growth of rainbow trout. J Fish Biol. 2001;59:157-65. https://doi.org/10.1111/j.1095-8649.2001.tb02345.x
  37. Wan X, Zhang X, Huo Y, Wang G. Weather entrainment and multispectral diel activity rhythm of desert hamsters. Behav Process. 2013;99:62-6. https://doi.org/10.1016/j.beproc.2013.06.011
  38. Wood AW, Duan C, Bern HA. Insulin-like growth factor signaling in fish. Int Rev Cytol. 2005;243:215-85.
  39. Xing Y, Wensheng L, Haoran L. Polygenic expression of somatostatin in orangespotted grouper (Epinephelus coioides): molecular cloning and distribution of the mRNAs encoding three somatostatin precursors. Mol Cell Endocrinol. 2005;241:62-72. https://doi.org/10.1016/j.mce.2005.05.008

Cited by

  1. Changes in Body Growth and Growth-Related Genes under Different Photoperiods in Olive Flounder, Paralichthys olivaceus vol.23, pp.2, 2017, https://doi.org/10.12717/dr.2019.23.2.149
  2. Effect of melatonin and folic acid supplementation on the growth performance, antioxidant status, and liver histology of the farmed gilthead sea bream (Sparus aurata L.) under standard rearing conditi vol.46, pp.6, 2020, https://doi.org/10.1007/s10695-020-00879-5