DOI QR코드

DOI QR Code

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed (Department of Mathematics and Statistics, Faculty of Science, King Faisal University)
  • 투고 : 2016.07.17
  • 심사 : 2017.05.17
  • 발행 : 2017.08.10

초록

In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.

키워드

과제정보

연구 과제 주관 기관 : King Faisal University

참고문헌

  1. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib. 326(1), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
  2. Akavci, S.S. (2014), "Thermal buckling analysis of functionally graded plates on an elastic foundation according to a hyperbolic shear deformation theory", Mech. Compos. Mater., 50(2), 197-212. https://doi.org/10.1007/s11029-014-9407-1
  3. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28, 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  4. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
  5. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  6. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  7. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126 https://doi.org/10.12989/sss.2017.19.2.115
  8. Bouderba, B., Houari, M.S.A., Tounsi, A., and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  9. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227 - 249. https://doi.org/10.12989/scs.2016.20.2.227
  10. Cheng, Z.Q. and Batra, R.C. (2000), "Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories", Arch. Mech., 52, 143-158.
  11. Craciunescu, C.M. and Wuttig, M. (2003), "New ferromagnetic and functionally grade shape memory alloys", J. Optoelectron. Adv. Mater., 5(1), 139-146.
  12. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  13. Eringen, A.C. (1983), "ON differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys. 54, 4703-4710. https://doi.org/10.1063/1.332803
  14. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, USA.
  15. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  16. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", J. Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  17. Fu, Y., Du, H., Huang, W., Zhang, S. and Hu, M. (2004), "TiNi-based thin films in MEMS applications: a review", Sens. Actuat. A - Phys., 112(2-3), 395-408. https://doi.org/10.1016/j.sna.2004.02.019
  18. Hashemi, S.H., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022
  19. Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E, 43, 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
  20. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  21. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions", Eng. Struct., 22(4), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
  22. Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S. et al. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", J. Nanotechnol., 17(12), 3063-3070. https://doi.org/10.1088/0957-4484/17/12/042
  23. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  24. Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H. and Benyoucef, S. (2011), "Two new refined shear displacement models for functionally graded sandwich plates", Arch. Appl. Mech., 81(11), 1507-1522. https://doi.org/10.1007/s00419-010-0497-5
  25. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  26. Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mech., 223, 395-413. https://doi.org/10.1007/s00707-011-0560-5
  27. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
  28. Nazemnezhad, R. and Hashemi, S.H. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
  29. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
  30. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38, 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011
  31. Qian, L.F., Batra, R.C. and Chen, L.M. (2003), "Free and forced vibrations of thick rectangular plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin (MLPG)", Comput. Model. Eng. Sci., 4, 519-534.
  32. Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", DETC 2009-86254, 3rd international conference on micro- and nano-systems (MNS3), San Diego, CA, August-September.
  33. Reddy, J. (1984), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Solid. Struct., 20(9), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
  34. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  35. Roque, C.M.C., Ferreira, A.J.M. and Jorge, R.M.N. (2007), "A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory", J. Sound Vib., 300, 1048-1070. https://doi.org/10.1016/j.jsv.2006.08.037
  36. Shen, H.S., Chen, Y. and Yang, J. (2003), "Bending and vibration characteristics of a strengthened plate under various boundary conditions", Eng. Struct., 25(9), 1157-1168. https://doi.org/10.1016/S0141-0296(03)00063-4
  37. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-46. https://doi.org/10.2514/2.1622
  38. Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296, 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
  39. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-86. https://doi.org/10.1016/j.compstruct.2012.10.038
  40. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  41. Sobhy, M. (2014a), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mech., 225, 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
  42. Sobhy, M. (2014b), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30(5), 443-453. https://doi.org/10.1017/jmech.2014.46
  43. Sobhy, M. (2015a), "Levy-type solution for bending of singlelayered graphene sheets in thermal environment using the twovariable plate theory", Int. J. Mech. Sci., 90, 171-178. https://doi.org/10.1016/j.ijmecsci.2014.11.014
  44. Sobhy, M. (2015b), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
  45. Sobhy, M. (2015c), "Hygrothermal deformation of orthotropic nanoplates based on the state-space concept", Compos. Part B, 79, 224-235. https://doi.org/10.1016/j.compositesb.2015.04.042
  46. Sobhy, M. (2016a), "Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory", Appl. Math. Model., 40, 85-99. https://doi.org/10.1016/j.apm.2015.04.037
  47. Sobhy, M. (2016b), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003
  48. Sobhy, M., and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089
  49. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-220. https://doi.org/10.1007/BF01176650
  50. Srinivas, S., Rao, C.V.J. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
  51. Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T., and Nguyen-Xuan, H. (2014), "Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech.-A/Solid., 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001
  52. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., and Rabczuk, T. (2015), Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mech. Adv. Mater. Struct., 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
  53. Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  54. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
  55. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  56. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702
  57. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum., 492-493, 255-260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255
  58. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  59. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93, 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
  60. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34, 1119-1138. https://doi.org/10.1080/01495739.2011.606017
  61. Zenkour, A.M. and Sobhy, M. (2012), "Elastic foundation analysis of uniformly loaded functionally graded viscoelastic sandwich plates", J. Mech., 28, 439-452. https://doi.org/10.1017/jmech.2012.53
  62. Zenkour, A.M. and Sobhy, M. (2013), "Dynamic bending response of thermoelastic functionally graded plates resting on elastic foundations", Aerosp. Sci. Technol., 29, 7-17. https://doi.org/10.1016/j.ast.2013.01.003

피인용 문헌

  1. Thermal buckling of double-layered graphene system in humid environment vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa2ba
  2. The Nonlocal Strain Gradient Theory for Hygrothermo-Electromagnetic Effects on Buckling, Vibration and Wave Propagation in Piezoelectromagnetic Nanoplates vol.11, pp.7, 2017, https://doi.org/10.1142/s1758825119500674