Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities, China Postdoctoral Science Foundation
References
- ABAQUS Theory Manual, Version 6.9.
- Ai, W.L. and Augarde, C.E. (2016), "An Adaptive Cracking Particle Method for 2D Crack Propagation", Int. J. Numer. Meth. Eng., 108(13), 1626-1648. https://doi.org/10.1002/nme.5269
- Atkinson, C. (1972), "The interaction between a crack and an inclusion", Int. J. Eng. Sci., 10(2), 127-136. https://doi.org/10.1016/0020-7225(72)90011-0
- Attigui, M. and Petit, C. (1997), "Mixed-mode separation in dynamic fracture mechanics: New path independent integrals", Int. J. Fatigue, 84, 19-36.
- Belytschko T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Fatigue crack growth in functionally graded material using homogenized XIGA", Compos. Struct., 134, 269-284. https://doi.org/10.1016/j.compstruct.2015.08.065
- Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192, 3887-3908. https://doi.org/10.1016/S0045-7825(03)00391-8
- Dong, C.Y., Lo, S.H. and Cheung, Y.K. (2003), "Numerical analysis of the inclusion-crack interactions using an integral equation", Comput. Mech., 30, 119-130. https://doi.org/10.1007/s00466-002-0372-5
- Erdogan, F. and Gupta, G.D. (1975), "The inclusion problem with a crack crossing the boundary", Int. J. Fracture, 11(1), 13-27. https://doi.org/10.1007/BF00034709
- Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plane loading and transverse shear", J. Basic Eng., 85, 519-527. https://doi.org/10.1115/1.3656897
- Erdogan, F., Gupta, G.D. and Ratwani, M. (1974), "Interaction between a circular inclusion and an arbitrarily oriented crack", J. Appl. Mech., 41(4), 1007-1013. https://doi.org/10.1115/1.3423424
- Fedelinski, P. (2011), "Computer modelling of dynamic fracture experiments", Key Eng. Mater., 454, 113-125.
- Gregoire, D., Maigre, H., Rethore, J. and Combescure, A. (2007), "Dynamic crack propagation under mixed-mode loadingcomparison between experiments and XFEM simulations", Int. J. Solid. Struct., 44, 6517-6534. https://doi.org/10.1016/j.ijsolstr.2007.02.044
- Haboussa, D., Gregoire, D., Elguedj, T., Maigre, H. and Combescure, A. (2011), "X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations", Int. J. Numer. Meth. Eng., 86, 618-636. https://doi.org/10.1002/nme.3128
- Hattori, G., Alatawi, I.A. and Trevelyan, J. (2016), "An extended boundary element method formulation for the direct calculation of the stress intensity factors in fully anisotropic materials", Int. J. Numer. Meth. Eng., 109(7), 965-981. https://doi.org/10.1002/nme.5311
- Jiang, S.Y., Du, C.B. and Gu, C.S. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
- Jiang, S.Y., Du, C.B., Gu, C.S. and Chen X.C. (2014), "XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crac", Fatigue Fract. Eng. Mater. Struct., 37(8), 866-882. https://doi.org/10.1111/ffe.12150
- Kim, J., Zi, G., Van, S, Jeong, M., Kong, J. and Kim, M. (2011), "Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model", Struct. Eng. Mech., 38, 443-457. https://doi.org/10.12989/sem.2011.38.4.443
- Kumar, S., Shedbale, A.S., Singh, I.V. and Mishra, B.K. (2015), "Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM", Front. Struct. Civil Eng., 9(4), 420-440. https://doi.org/10.1007/s11709-015-0305-y
- Kumar, S., Singh, I.V. and Mishra, B.K. (2016), "New enrichments in XFEM to model dynamic crack response of 2-D elastic solids", Int. J. Impact Eng., 87, 198-211. https://doi.org/10.1016/j.ijimpeng.2015.03.005
- Kumar, S., Singh, I.V. and Mishra, B.K., (2014), "A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials", Theor. Appl. Fract. Mech., 72, 121-135. https://doi.org/10.1016/j.tafmec.2014.03.005
- Kumar, S., Singh, I.V. and Mishra, B.K., (2015), "A homogenized XFEM approach to simulate fatigue crack growth problems", Comput. Struct., 150, 1-22. https://doi.org/10.1016/j.compstruc.2014.12.008
- Kumar, S., Singh, I.V., Mishra, B.K. and Rabczuk, T. (2015), "Modeling and simulation of kinked cracks by virtual node XFEM", Comput. Meth. Appl. Mech. Eng., 283, 1425-1466. https://doi.org/10.1016/j.cma.2014.10.019
- Lam, K.Y., Zhang, J.M. and Ong, P.P. (1992), "A new integral equation formulation for the analysis of crack-inclusion interactions", Comput. Mech., 10, 217-229.
- Lee, J., Choi, S. and Mal, A. (2001), "Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique", Int. J. Solid. Struct., 38, 2789-2802. https://doi.org/10.1016/S0020-7683(00)00182-7
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 39, 289-314.
- Moes, N., Cloirec, M., Cartraud, P. and Remacle, J.F. (2003), "A computational approach to handle complex microstructure geometries", Comput. Meth. Appl. Mech. Eng., 192, 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
- Moes, N., Dolbow, J. and Belytschko, T., (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Nishioka, T., Tokudome, H. and Kinoshita, M. (2001), "Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation", Int. J. Solid. Struct., 38, 5273-5301. https://doi.org/10.1016/S0020-7683(00)00345-0
- O‟Hara, P., Duarte, C.A. and Eason, T. (2016), "A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces", Eng. Fract. Mech., 163, 274-302. https://doi.org/10.1016/j.engfracmech.2016.06.009
- Ooi E.T., Shi M., Song C., Tin-Loi, F. and Yang, Z.J. (2012), "Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique", Eng. Fract. Mech., 106, 1-21.
- Ooi, E.T. and Yang, Z.J. (2011), "Modelling dynamic crack propagation using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 88(4), 329-349. https://doi.org/10.1002/nme.3177
- Ooi, E.T., Song, C. and Tin, L.F. (2012), "Polygon scaled boundary finite elements for crack propagation modelling", Int. J. Numer. Meth. Eng., 91(3), 319-342. https://doi.org/10.1002/nme.4284
- Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", Int. J. Numer. Meth. Eng., 44(9), 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- Patton, E.M. and Santare, M.H. (1990), "The effect of a rigid elliptical inclusion on a straight crack", Int. J. Fracture, 46, 71-79.
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61, 2316-2343. https://doi.org/10.1002/nme.1151
- Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A simplified mesh-free method for shear bands with cohesive surfaces", Int. J. Numer. Meth. Eng., 69, 993-1021. https://doi.org/10.1002/nme.1797
- Sharma, K., Singh, I.V., Mishra, B.K. and Shedbale, A.S. (2013), "The Effect of Inhomogeneities on an Edge Crack: A Numerical Study using XFEM", Int. J. Comput. Meth. Eng. Sci. Mech., 14(6), 505-523. https://doi.org/10.1080/15502287.2013.820227
- Shi, G.H. (1992), "Modeling rock joints and blocks by manifold method", Proceedings of the 33th US Rock Mechanics Symposium, New Mexico: Santa Fe.
- Simpson, R. and Trevelyan, J. (2011), "A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics", Comput. Meth. Appl. Mech. Eng., 200(1-4), 1-10. https://doi.org/10.1016/j.cma.2010.06.015
- Singh, I.V., Mishra, B.K. and Bhattacharya, S. (2011), "XFEM simulation of cracks, holes and inclusions in functionally graded materials", Int. J. Mech. Mater. Des., 7, 199-218. https://doi.org/10.1007/s10999-011-9159-1
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatigue, 36, 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- Song, S.H. and Paulino, G.H. (2006), "Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method", Int. J. Solid. Struct., 43, 4830-4866. https://doi.org/10.1016/j.ijsolstr.2005.06.102
- Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method, Part I:Computer implementation", Int. J. Solid. Struct., 40, 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002
- Sukumar, N., Chopp, D.L., Moes, N. and Belytschko, T. (2001), "Modeling Holes and inclusions by level sets in the extended finite element method", Comput. Meth. Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
- Wu, Z.J. and Wong, L.N.Y. (2013), "Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method", Eng. Geol., 162, 1-13. https://doi.org/10.1016/j.enggeo.2013.05.001
- Ye, C., Shi, J. and Cheng, G.J. (2012), "An eXtended Finite Element Method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite", Int. J. Fatigue, 44, 151-156. https://doi.org/10.1016/j.ijfatigue.2012.05.004
- Zhuang, X., Augarde, C. and Bordas, S. (2011), "Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling", Int. J. Numer. Meth. Eng., 86(2), 249-268. https://doi.org/10.1002/nme.3063
- Zhuang, X., Augarde, C. and Mathisen, K. (2012), "Fracture modeling using meshless methods and level sets in 3D: framework and modeling", Int. J. Numer. Meth. Engng., 92(11), 969-998. https://doi.org/10.1002/nme.4365
Cited by
- Stochastic Fracture Analysis Using Scaled Boundary Finite Element Methods Accelerated by Proper Orthogonal Decomposition and Radial Basis Functions vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9181415
- Fatigue crack growth in metallic components: Numerical modelling and analytical solution vol.79, pp.5, 2017, https://doi.org/10.12989/sem.2021.79.5.541