DOI QR코드

DOI QR Code

Study on dynamic interaction between crack and inclusion or void by using XFEM

  • Jiang, Shouyan (Department of Engineering Mechanics, Hohai University) ;
  • Du, Chengbin (Department of Engineering Mechanics, Hohai University)
  • Received : 2016.10.25
  • Accepted : 2017.03.30
  • Published : 2017.08.10

Abstract

This paper devoted to study dynamic interaction between crack and inclusion or void by developing the eXtended Finite Element Methods (XFEM). A novel XFEM approximation is presented for these structures containing multi discontinuities (void, inclusion, and crack). The level set methods are used so that elements that include a crack segment, the boundary of a void, or the boundary of an inclusion are not required to conform to discontinuous edges. The investigation covers the effects of a single circular or elliptical void / stiff inclusion, and multi stiff inclusions on the crack propagation path under dynamic loads. Both the void and the inclusion have a significant effect on the dynamic crack propagation path. The crack initially curves towards into the void, then, the crack moves round the void and propagates away the void. If a large void lies in front of crack tip, the crack may propagate into the void. If an enough small void lies in front of crack tip, the void may have a slight or no influence on the crack propagation path. For a stiff inclusion, the crack initially propagates away the inclusion, then, after the crack moves round the inclusion, it starts to propagate along its original path. As ${\delta}$ (the ratio of the elastic modulus of the inclusion to that of the matrix) increases, a larger curvature of the crack path deflection can be observed. However, as ${\delta}$ increases from 2 to 10, the curvature has an evident increase. By comparison, the curvature has a slight increase, as ${\delta}$ increases from 10 to 1000.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities, China Postdoctoral Science Foundation

References

  1. ABAQUS Theory Manual, Version 6.9.
  2. Ai, W.L. and Augarde, C.E. (2016), "An Adaptive Cracking Particle Method for 2D Crack Propagation", Int. J. Numer. Meth. Eng., 108(13), 1626-1648. https://doi.org/10.1002/nme.5269
  3. Atkinson, C. (1972), "The interaction between a crack and an inclusion", Int. J. Eng. Sci., 10(2), 127-136. https://doi.org/10.1016/0020-7225(72)90011-0
  4. Attigui, M. and Petit, C. (1997), "Mixed-mode separation in dynamic fracture mechanics: New path independent integrals", Int. J. Fatigue, 84, 19-36.
  5. Belytschko T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  7. Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Fatigue crack growth in functionally graded material using homogenized XIGA", Compos. Struct., 134, 269-284. https://doi.org/10.1016/j.compstruct.2015.08.065
  8. Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192, 3887-3908. https://doi.org/10.1016/S0045-7825(03)00391-8
  9. Dong, C.Y., Lo, S.H. and Cheung, Y.K. (2003), "Numerical analysis of the inclusion-crack interactions using an integral equation", Comput. Mech., 30, 119-130. https://doi.org/10.1007/s00466-002-0372-5
  10. Erdogan, F. and Gupta, G.D. (1975), "The inclusion problem with a crack crossing the boundary", Int. J. Fracture, 11(1), 13-27. https://doi.org/10.1007/BF00034709
  11. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plane loading and transverse shear", J. Basic Eng., 85, 519-527. https://doi.org/10.1115/1.3656897
  12. Erdogan, F., Gupta, G.D. and Ratwani, M. (1974), "Interaction between a circular inclusion and an arbitrarily oriented crack", J. Appl. Mech., 41(4), 1007-1013. https://doi.org/10.1115/1.3423424
  13. Fedelinski, P. (2011), "Computer modelling of dynamic fracture experiments", Key Eng. Mater., 454, 113-125.
  14. Gregoire, D., Maigre, H., Rethore, J. and Combescure, A. (2007), "Dynamic crack propagation under mixed-mode loadingcomparison between experiments and XFEM simulations", Int. J. Solid. Struct., 44, 6517-6534. https://doi.org/10.1016/j.ijsolstr.2007.02.044
  15. Haboussa, D., Gregoire, D., Elguedj, T., Maigre, H. and Combescure, A. (2011), "X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations", Int. J. Numer. Meth. Eng., 86, 618-636. https://doi.org/10.1002/nme.3128
  16. Hattori, G., Alatawi, I.A. and Trevelyan, J. (2016), "An extended boundary element method formulation for the direct calculation of the stress intensity factors in fully anisotropic materials", Int. J. Numer. Meth. Eng., 109(7), 965-981. https://doi.org/10.1002/nme.5311
  17. Jiang, S.Y., Du, C.B. and Gu, C.S. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
  18. Jiang, S.Y., Du, C.B., Gu, C.S. and Chen X.C. (2014), "XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crac", Fatigue Fract. Eng. Mater. Struct., 37(8), 866-882. https://doi.org/10.1111/ffe.12150
  19. Kim, J., Zi, G., Van, S, Jeong, M., Kong, J. and Kim, M. (2011), "Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model", Struct. Eng. Mech., 38, 443-457. https://doi.org/10.12989/sem.2011.38.4.443
  20. Kumar, S., Shedbale, A.S., Singh, I.V. and Mishra, B.K. (2015), "Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM", Front. Struct. Civil Eng., 9(4), 420-440. https://doi.org/10.1007/s11709-015-0305-y
  21. Kumar, S., Singh, I.V. and Mishra, B.K. (2016), "New enrichments in XFEM to model dynamic crack response of 2-D elastic solids", Int. J. Impact Eng., 87, 198-211. https://doi.org/10.1016/j.ijimpeng.2015.03.005
  22. Kumar, S., Singh, I.V. and Mishra, B.K., (2014), "A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials", Theor. Appl. Fract. Mech., 72, 121-135. https://doi.org/10.1016/j.tafmec.2014.03.005
  23. Kumar, S., Singh, I.V. and Mishra, B.K., (2015), "A homogenized XFEM approach to simulate fatigue crack growth problems", Comput. Struct., 150, 1-22. https://doi.org/10.1016/j.compstruc.2014.12.008
  24. Kumar, S., Singh, I.V., Mishra, B.K. and Rabczuk, T. (2015), "Modeling and simulation of kinked cracks by virtual node XFEM", Comput. Meth. Appl. Mech. Eng., 283, 1425-1466. https://doi.org/10.1016/j.cma.2014.10.019
  25. Lam, K.Y., Zhang, J.M. and Ong, P.P. (1992), "A new integral equation formulation for the analysis of crack-inclusion interactions", Comput. Mech., 10, 217-229.
  26. Lee, J., Choi, S. and Mal, A. (2001), "Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique", Int. J. Solid. Struct., 38, 2789-2802. https://doi.org/10.1016/S0020-7683(00)00182-7
  27. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 39, 289-314.
  28. Moes, N., Cloirec, M., Cartraud, P. and Remacle, J.F. (2003), "A computational approach to handle complex microstructure geometries", Comput. Meth. Appl. Mech. Eng., 192, 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
  29. Moes, N., Dolbow, J. and Belytschko, T., (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  30. Nishioka, T., Tokudome, H. and Kinoshita, M. (2001), "Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation", Int. J. Solid. Struct., 38, 5273-5301. https://doi.org/10.1016/S0020-7683(00)00345-0
  31. O‟Hara, P., Duarte, C.A. and Eason, T. (2016), "A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces", Eng. Fract. Mech., 163, 274-302. https://doi.org/10.1016/j.engfracmech.2016.06.009
  32. Ooi E.T., Shi M., Song C., Tin-Loi, F. and Yang, Z.J. (2012), "Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique", Eng. Fract. Mech., 106, 1-21.
  33. Ooi, E.T. and Yang, Z.J. (2011), "Modelling dynamic crack propagation using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 88(4), 329-349. https://doi.org/10.1002/nme.3177
  34. Ooi, E.T., Song, C. and Tin, L.F. (2012), "Polygon scaled boundary finite elements for crack propagation modelling", Int. J. Numer. Meth. Eng., 91(3), 319-342. https://doi.org/10.1002/nme.4284
  35. Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", Int. J. Numer. Meth. Eng., 44(9), 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  36. Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  37. Patton, E.M. and Santare, M.H. (1990), "The effect of a rigid elliptical inclusion on a straight crack", Int. J. Fracture, 46, 71-79.
  38. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61, 2316-2343. https://doi.org/10.1002/nme.1151
  39. Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A simplified mesh-free method for shear bands with cohesive surfaces", Int. J. Numer. Meth. Eng., 69, 993-1021. https://doi.org/10.1002/nme.1797
  40. Sharma, K., Singh, I.V., Mishra, B.K. and Shedbale, A.S. (2013), "The Effect of Inhomogeneities on an Edge Crack: A Numerical Study using XFEM", Int. J. Comput. Meth. Eng. Sci. Mech., 14(6), 505-523. https://doi.org/10.1080/15502287.2013.820227
  41. Shi, G.H. (1992), "Modeling rock joints and blocks by manifold method", Proceedings of the 33th US Rock Mechanics Symposium, New Mexico: Santa Fe.
  42. Simpson, R. and Trevelyan, J. (2011), "A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics", Comput. Meth. Appl. Mech. Eng., 200(1-4), 1-10. https://doi.org/10.1016/j.cma.2010.06.015
  43. Singh, I.V., Mishra, B.K. and Bhattacharya, S. (2011), "XFEM simulation of cracks, holes and inclusions in functionally graded materials", Int. J. Mech. Mater. Des., 7, 199-218. https://doi.org/10.1007/s10999-011-9159-1
  44. Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatigue, 36, 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
  45. Song, S.H. and Paulino, G.H. (2006), "Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method", Int. J. Solid. Struct., 43, 4830-4866. https://doi.org/10.1016/j.ijsolstr.2005.06.102
  46. Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method, Part I:Computer implementation", Int. J. Solid. Struct., 40, 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002
  47. Sukumar, N., Chopp, D.L., Moes, N. and Belytschko, T. (2001), "Modeling Holes and inclusions by level sets in the extended finite element method", Comput. Meth. Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
  48. Wu, Z.J. and Wong, L.N.Y. (2013), "Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method", Eng. Geol., 162, 1-13. https://doi.org/10.1016/j.enggeo.2013.05.001
  49. Ye, C., Shi, J. and Cheng, G.J. (2012), "An eXtended Finite Element Method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite", Int. J. Fatigue, 44, 151-156. https://doi.org/10.1016/j.ijfatigue.2012.05.004
  50. Zhuang, X., Augarde, C. and Bordas, S. (2011), "Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling", Int. J. Numer. Meth. Eng., 86(2), 249-268. https://doi.org/10.1002/nme.3063
  51. Zhuang, X., Augarde, C. and Mathisen, K. (2012), "Fracture modeling using meshless methods and level sets in 3D: framework and modeling", Int. J. Numer. Meth. Engng., 92(11), 969-998. https://doi.org/10.1002/nme.4365

Cited by

  1. Stochastic Fracture Analysis Using Scaled Boundary Finite Element Methods Accelerated by Proper Orthogonal Decomposition and Radial Basis Functions vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9181415
  2. Fatigue crack growth in metallic components: Numerical modelling and analytical solution vol.79, pp.5, 2017, https://doi.org/10.12989/sem.2021.79.5.541