DOI QR코드

DOI QR Code

중첩 비음수 행렬 분해 기법에 기반한 지속파 능동 소나의 잔향 신호 제거 기법

Reverberation suppression algorithm for continuous-wave active sonar system based on overlapping nonnegative matrix factorization

  • 투고 : 2017.03.10
  • 심사 : 2017.07.31
  • 발행 : 2017.07.31

초록

본 논문에서는 지속파 능동 소나의 수신된 신호에서 잔향 신호를 제거하는 후처리 알고리즘을 도출하고자하며, 제안하는 알고리즘은 작은 도플러효과가 존재하여 목표물로부터 반사된 핑 신호가 잔향신호와 잘 구분이 되지 않는 경우를 목표로 하여 고안되었다. 본 알고리즘은 중첩 비음수 행렬 분해 기법에 기반하고 있으며, 방사될 핑 신호의 주파수 특성을 분석한 후, 수신된 신호의 시간-주파수 영역 특성을 이용하여 잔향 신호를 제거하고 핑 신호를 복원한다. 알고리즘의 효과를 분석하기 위하여 시뮬레이션을 수행하였으며, 시뮬레이션 결과 다양한 진향 신호 에너지 환경에서 6 dB 가량의 신호대잔향비 성능 향상을 보임을 확인할 수 있었다.

In this paper, a post-processing algorithm to suppress reverberation for continuous-wave active sonar system is developed. The developed algorithm is designed for a low-doppler environment where the target echo is not distinguishable from the reverberation. The algorithm is developed based on overlapping nonnegative matrix factorization method. The algorithm analyzes the frequency characteristics of transmitting ping signal, then suppresses the reverberation using time-frequency characteristics of the received signal. Simulations performed in order to evaluate the proposed algorithm, and the results show that the proposed algorithm makes 6 dB signal-to-reverberation ratio enhancement in various reverberation energy conditions.

키워드

참고문헌

  1. H. Cox and L. Hung, "Geometric comb waveforms for reverberation suppression," 1994 Conference Record of the Twenty-Eighty Asilomar Conference on Signals, Systems and Computers 2, 1185-1189 (1994).
  2. T. Collins and P. Atkins, "Doppler-sensitive active sonar pulse designs for reverberation processing," IEE Proceedings of Radar, Sonar, and Navigation 145, 347-353 (1998). https://doi.org/10.1049/ip-rsn:19982434
  3. Y. Doisy, L. Deuraz, S. P. van Ijsselmuide, S. P. Beerens, and R. Been, "Reverberation suppression using wideband Doppler-Sensitive pulses," IEEE J. Ocean. Eng. 33, 419-433 (2008). https://doi.org/10.1109/JOE.2008.2002582
  4. G. Ginolhac and G. Jourdain, "Principal component inverse algorithm for detection in the presence of reverberation," IEEE J. Ocean. Eng. 27, 310-321 (2002). https://doi.org/10.1109/JOE.2002.1002486
  5. W. Lei, Q. Zhang, X. Ma, and C. Hou, "Active Sonar detection in reverberation via signal subspace extraction algorithm," EURASIP J. Wireless Communications and Networking 2010, 1-10 (2010).
  6. P. Faure, "Theoretical model of reverberation noise," J. Acoust. Soc. Am. 36, 259-266 (1964). https://doi.org/10.1121/1.1918943
  7. F. C. Marchall, "A conceptual model of reverberation in the ocean," Proc. IEEE ICSSP 2, 836-839 (1977).
  8. D. A. Abraham and A. P. Lyons, "Simulation of Non-Rayleigh reverberation and clutter," IEEE J. Ocean. Eng. 29, 347-362 (2004). https://doi.org/10.1109/JOE.2004.828202
  9. A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations (Wiley, Chichester, 2009), pp. 160-166.
  10. T. Virtanen, "Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria," IEEE Trans. Audio, Speech, and Lang. Process. 15, 1066-1074 (2007). https://doi.org/10.1109/TASL.2006.885253