초록
본 논문에서는 커널 모델과 장단기 기억(Long-Short Term Memory, LSTM) 신경망을 결합한 보컬 및 비보컬 분리 방식을 제안한다. 기존의 음원 분리 방식은 비보컬 음원만 있는 구간에서 음원을 오추정하여 불필요한 비보컬 음원을 출력하는 한계가 있다. 따라서 본 논문에서는 커널 모델 기반의 보컬음 분리 방식에 LSTM 신경망 기반의 보컬 구간 분류 방식을 결합하여 보컬 음원의 오추정 문제를 개선하고 분리 성능을 향상시키고자 하였다. 또한 본 논문에서는 방식간의 결합 구조에 따라 병렬 결합형 분리 알고리즘과 직렬 결합형 분리 알고리즘을 제안하였으며, 실험을 통해 제안하는 방식들이 기존의 방식에 비해 더욱 향상된 분리 성능을 보이는 것을 확인할 수 있었다.
In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.