DOI QR코드

DOI QR Code

The Analysis of CT Number Rate of Change of Applying The Iterative Metallic Artifact Reduction Algorithm for CT Reconstruction Image

Iterative Metallic Artifact Reduction 알고리즘 적용 CT 재구성영상의 CT Number 변화율 분석

  • Kim, Hyeonju (Department of Radiologic Technology, Dongnam Health University) ;
  • Yoon, Joon (Department of Radiologic Technology, Dongnam Health University)
  • 김현주 (동남보건대학교 방사선과) ;
  • 윤준 (동남보건대학교 방사선과)
  • Received : 2017.04.26
  • Accepted : 2017.07.07
  • Published : 2017.07.31

Abstract

This study was performed using Somatom Definition Flash (Siemens, Enlarge, Germany) and GE 64-MDCT (Discovery 750 HD, GE HEALTHCARE, Milwaukee, USA.) using high-density medical materials that (are indispensable to?) computed tomography. We analyzed quantitatively the rate of change of the CT number of the CT reconstruction images by means of the IMAR and MAR algorithms using the phantom images acquired after scanning and previously captured raw data images. As a result, it was shown that the IMAR and MAR algorithms provided if ferent phantom images in the case of all medical high-density materials (p <0.05). The black streak artifacts were analyzed using the MAR and IMAR algorithms to determine if they corresponded to stainless steel materials (p>0.05). Also, it was found that the application of the IMAR algorithm affects the attenuation deviation, because there is a change in the image CT number compared to that before. The results suggest that, in the future, after the implant procedure, it would be useful to observe the surgical site and surrounding tissues during follow-up CT scans.

본 연구는 컴퓨터 단층촬영 영상에서 제거할 수 없는 의료용 고밀도 물질을 Somatom Definition Flash(Siemens, Enlarge, Germany.)와 GE 64-MDCT (Discovery 750 HD, GE HEALTHCARE, Milwaukee, USA.)스캔 후 획득한 팬텀영상 데이터와 이미 촬영된 Raw 데이터영상을 이용하여 IMAR 알고리즘과 MAR 알고리즘 적용 및 재구성한 후 CT 재구성영상의 CT Number 변화율을 정량적으로 분석하였다. 그 결과 팬텀영상의 모든 의료용 고밀도 물질은 IMAR 알고리즘과 MAR 알고리즘 적용 시 CT Number의 변화와 영상의 차이가 있는 것으로 나타났지만(p<0.05). Stainless Steel 재질은 Black streak artifact에서 MAR 또는 IMAR 알고리즘 적용 시 재구성 영상의 변화와 CT Number의 변화차이가 없는 것으로 분석되었다(p>0.05). 또한 이미 촬영된 Raw 데이터영상 분석결과 IMAR 알고리즘 적용 시 적용 전에 비하여 영상 CT Number 변화가 있어, IMAR 알고리즘 적용은 Attenuation deviation에 영향을 미치는 것을 알 수 있었다. 이 결과를 바탕으로 향후 Implant시술 후 추적 CT검사 시 수술부위 및 주변조직의 상태를 관찰하는데 유용할 것으로 사료된다.

Keywords

References

  1. C. H. Lim, H. R. Jung, M. G. Lee, Management patient dose in CT examinations (ICRP Publish 87), Computed Tomographic Technology, vol. 1, no. 1, p. 527, 2005.
  2. D. H. Jeong, D. J. Kim, H. M. Jin, J. J A, S. J. Yoo, The Usefulness of OMAR (Metal Artifact Reduction for Orthopedic implants) for Patients with Dental Implants Journal of korean society of Computed Tomographic Technology, vol. 15. no. 1, p. 327, 2013.
  3. S. H. Kim, et al., Development and Radiation Shield effects of Dose Reduction Fiber for Fiber for Scatter ray in CT Exams, Journal of Korean Academia-Industrial cooperation Society, vol. 14, no. 4 pp. 1871-1872, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.4.1871
  4. C. H. Lee, C. S. Lim, A study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection, Journal of Korean Academia-Industrial cooperation Society, vol. 12, no. 7, pp. 3117-3122, July 2011. DOI: https://doi.org/10.5762/KAIS.2011.12.7.3117
  5. S. H. Lee, K. H. Yang, D. Y. Kim, S. B. Kim, MAR method of study use to Dual Source CT. Journal of korean society of Computed Tomographic Technology, vol. 1, no. 15, 2013.
  6. H. J. Kim, A study of beam hardening effect reduction occur in brain CT, Journal of Korean Academia-Industrial cooperation Society, vol. 16, no. 12 pp. 8479-8486, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.12.8479
  7. Lucas L. Geyer, MD2, U. Joseph Schoepf, MD, Felix G. Meinel, MD2, John W. Nance, Jr, MD3, Gorka Bastarrika, MD, Jonathon A. Leipsic, MD, Narinder S. Paul, MD, Marco Rengo, MD, PhD Andrea Laghi, MD, Carlo N. De Cecco, MD, Iterative CT Reconstruction Techniques, Article in Radiology, vol. 276, no. 1, pp. 339-357, 2015. https://doi.org/10.1148/radiol.2015132766
  8. M. S. Kim, J. S. Jeong, M. G. Kim, Clinical Apply of Dual Energy CT (kVp switching) : A Novel Approach for MAR(Metal Artifact Reduction) Method, Journal of Radiation Protection and Research, vol. 41, no. 4, Dec. 2016.
  9. G. J. Kim, S. H. Bae, K. J. Kim, H. K. Oh, Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image, Journal of Korean Academia-Industrial cooperation Society, vol. 12, no. 10, pp. 4418-4424, July 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.10.4418
  10. Prell D, Kalender WA, Kyriakou Y. Development, implementation and evaluation of a dedicated metal artefact reduction method for interventional flat-detector CT. British Journal of Radiology vol. 83, no. 996, pp. 1052-1062, 2010. DOI: https://doi.org/10.1259/bjr/19113084
  11. Amir Motevakel, Alexander Medvedev Localization of deep brain stimulation electrodes via metal artifacts in CT images. Conference paper August, 2014. DOI: https://doi.org/10.1109/EMBC.2014.6943775
  12. J. F. Barrett and N. Keat, "Artifacts in CT: Recognition and avoidance," Radiographics, vol. 24, no. 6, pp. 1679-1691, 2004. DOI: https://doi.org/10.1148/rg.246045065
  13. R A. L. Kotsenas, G. J. Michalak, D. R. DeLone, F. E. Diehn, K. Grant, A. F. Halaweish, A. Krauss, R. Raupach, B. Schmidt, C. H. McCollough, J. G. Fletche CT MetalArtifactReductionintheSpine : CananIterative Reconstruction Technique Improve Visualization. AJNR Am J Neuroradiol, vol. 36 no. 2184-90, Nov. 2015.
  14. Y. H. Kim, et al., Patient exposure doses from medical X-ray examination in Korea, Journal of Korean Academia-Industrial cooperation Society vol. 28, no. 3 pp. 241-248 September, 2011.
  15. Hong-Rynag Jung, Ki-Jeong Kim, Eun-He Mo, "A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom", Journal of the Korea Convergence Society, vol. 6, no. 5, pp. 287-294, 2015. DOI: https://doi.org/10.15207/JKCS.2015.6.5.287
  16. Chang-Gyu Kim, "Spatial dose distribution and exposure dose during lumbar lateral test", Journal of the Korea Convergence Society, vol. 5, no. 1, pp. 17-22, 2014. DOI: https://doi.org/10.15207/JKCS.2014.5.1.017
  17. Chang-Gyu Kim, Byung-Sub Park, "The evaluation of the radiation dose and the image quality during MDCT using Glass Rod Detector", Journal of Digital Policy & Management, vol. 10, no. 2, pp. 249-254, 2012.
  18. H. L. Lee, et al., "The Effect of a Thyroid Shield Made of a Tissue-Equivalent Material on the Reduction of the Thyroid Exposure Dose in Panoramic Radiography", Journal of Korean Academia-Industrial cooperation Society, vol. 13, no. 5, pp. 2278-2284, 2012. DOI: https://doi.org/10.5762/KAIS.2012.13.5.2278
  19. Yun Park, Sang-Hyun Kim, "The Study of Effectiveness of Volume Mode in Pediatric CT", Journal of Digital Convergence, vol. 12, no. 10, pp. 425-431, 2014. DOI: https://doi.org/10.14400/JDC.2014.12.10.425
  20. Youl-Hun Seoung, "Evaluation of Spatial Resolution for Exposure Class in Computed Radiography by Using the Modulation Transfer Function", Journal of Digital Policy & Management, vol. 11, no. 8, pp. 173-279, 2013.
  21. H. Park, H. C. Lee, K. D. Kim et al., "The elimination of the linear artifacts by the metal restorations in the three dimensional computed tomographic images using the personal computer and software", Korean Journal of Oral and Maxillofacial Radiology, vol. 22, no. 33, pp. 151-159, 2003.
  22. Naveen Subhas, Andrew N. Primak, Nancy A, Obuchowski, Amit Gupta, Joshua M. Polster, Andreas Krauss, Joseph P. Iannotti, Iterative metal artifact reduction : Evaluation and optimization of technique, vol. 12, no. 29, Apr. 2014.
  23. Hongli Shi, Shuqian Luo, Zhi Yang, Geming Wu, A Novel Iterative CT Reconstruction Approach Based on FBP Algorithm, PLoS One. vol. 10, no. 9: e0138498. Published online, Sep. 2015. DOI: https://doi.org/10.1371/journal.pone.0138498