DOI QR코드

DOI QR Code

A study of Physically Implanted Surface Islands by direct Nd:YAG Laser Beam Irradiation

  • Received : 2017.07.05
  • Accepted : 2017.07.21
  • Published : 2017.07.31

Abstract

Physically implanted surface islands of Nano Carbon Tube (NCT) and ${\alpha}-F_2O_3$ particles have been produced on Al-doped ZnO (AZO)/glass surfaces by simple and direct ND:YAG laser beam irradiation. Sheet resistance of the reconstructed surface increased by about 3.6% of over AZO. Minimal surface damage can be repaired by ND:YAG laser beam irradiation in conjunction with proper impurities. Implanted islands of NCT, which are considered to be a good conductive impurity, on AZO increased the sheet resistance by about 1.8%, while implanted islands of ${\alpha}-F_2O_3$, an insulating impurity, on AZO increased sheet resistance by about 129% compared with a laser beam treated AZO. This study provides insight regarding surface implantations of nanowires and micro-circuits, doping effects for semiconductors and optical devices, surface area and impurity effects for catalysis.

Keywords

References

  1. Y. J. Moon, H. Kang, K. Knag, S -J Moon, and J. Y. Hwang, J. Electron. Mater. 44, 1192 (2015). https://doi.org/10.1007/s11664-015-3639-2
  2. H. Kim, H. -H Park, and J. Kim, Mat. Sci. Semicon. Proc. 48, 79 (2016). https://doi.org/10.1016/j.mssp.2016.03.016
  3. Q. Qi, Y. Liu, H. Zhang, J. Zhao, and Z. Huang, J. Alloy. Compd. 678, 375 (2016). https://doi.org/10.1016/j.jallcom.2016.03.301
  4. D. Murley, N. Young, M. Trainor, and D. McCulloch, IEEE Trans. Electron. Dev. 48, 1145 (2001). https://doi.org/10.1109/16.925240
  5. I. Ozerov, M. Arab, V. I. Safarov, W. Marine, S. Giorgio, M. Sentis, and L.Nanai, Appl. Surf. Sci. 226, 242 (2004). https://doi.org/10.1016/j.apsusc.2003.11.038
  6. A. Medvid, P. Onufrijevs, and A. Mychko, Nano-scale Res. Lett 6, 582 (2011). https://doi.org/10.1186/1556-276X-6-582
  7. W. Lin, R. Ma, W. Shao, and B. Liu, Appl. Surf. Sci. 253, 5179 (2007). https://doi.org/10.1016/j.apsusc.2006.11.032
  8. R. Kumaravel, S. Bhuvaneswari, K. Ramamurthi, and V. Krishnakumar, Appl. Phys. A 109, 579 (2012). https://doi.org/10.1007/s00339-012-7069-1
  9. A. K. Dubey and V. Yadava, J. Mater. Proc. Tech 195, 15 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.041
  10. F. Gonella, Nucl. Instr. and Meth. in Phys. Res. B 166, 831 (2000).
  11. Y. Q. Wang, M. Curry, E. Tavenner, N. Dobson, and R. E. Giedd, Nucl. Instr. and Meth. in Phys. Res. B 219, 798 (2004).
  12. H. Yu, M. Kim, Y. Kim, J. Lee, K. -K. Kim, S. -J. Choi, and S. Cho, Electron. Mater. Lett 10, 2 (2014).
  13. I. Volintiru, M. Creatore, and B. J. Kniknie, J. Appl, Phys 102, 043709 (2007). https://doi.org/10.1063/1.2772569
  14. T. Minami, Thin Solid Films 516, 1314 (2008). https://doi.org/10.1016/j.tsf.2007.03.082
  15. G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, and P. Mengucci, Mater. Sci. Eng. C 48, 263 (2015). https://doi.org/10.1016/j.msec.2014.12.009
  16. H. Sankur and J. T. Cheung, Appl. Phys. A 47, 271 (1988). https://doi.org/10.1007/BF00615933
  17. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, and B. H. Hong, Nature 357, 706 (2009).