DOI QR코드

DOI QR Code

A new extended Birnbaum-Saunders model with cure fraction: classical and Bayesian approach

  • Ortega, Edwin M.M. (Departamento de Ciencias Exatas, Universidade de Sao Paulo) ;
  • Cordeiro, Gauss M. (Departamento de Estatistica, Universidade Federal de Pernambuco) ;
  • Suzuki, Adriano K. (Departamento de Matematica Aplicada e Estatistica, Universidade de Sao Paulo) ;
  • Ramires, Thiago G. (Departamento de Ciencias Exatas, Universidade de Sao Paulo)
  • 투고 : 2017.05.10
  • 심사 : 2017.07.07
  • 발행 : 2017.07.31

초록

A four-parameter extended fatigue lifetime model called the odd Birnbaum-Saunders geometric distribution is proposed. This model extends the odd Birnbaum-Saunders and Birnbaum-Saunders distributions. We derive some properties of the new distribution that include expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood and a Bayesian approach are adopted to estimate the model parameters; in addition, various simulations are performed for different parameter settings and sample sizes. We propose two new models with a cure rate called the odd Birnbaum-Saunders mixture and odd Birnbaum-Saunders geometric models by assuming that the number of competing causes for the event of interest has a geometric distribution. The applicability of the new models are illustrated by means of ethylene data and melanoma data with cure fraction.

키워드

참고문헌

  1. Alexander C, Cordeiro GM, Ortega EMM, and Sarabia JM (2012). Generalized beta-generated distributions, Computational Statistics and Data Analysis, 56, 1880-1897. https://doi.org/10.1016/j.csda.2011.11.015
  2. Alizadeh M, Emadi M, Doostparast M, Cordeiro GM, Ortega EMM, and Pescim RR (2015). A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications, Hacettepe Journal of Mathematics and Statistics, 44, 1491-1512.
  3. Berkson J and Gage RP (1952). Survival curve for cancer patients following treatment, Journal of the American Statistical Association, 47, 505-515.
  4. Boag JW (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy, Journal of the Royal Statistical Statistical Society Series B (Methodological), 11, 15-53.
  5. Brooks SP (2002). Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde, Journal of the Royal Statistical Society Series B (Methodological), 64, 616-618.
  6. Cancho VG, Ortega EMM, Barriga GDC, and Hashimoto EM (2011). The Conway-Maxwell-Poissongeneralized gamma regression model with long-term survivors, Journal of Statistical Computation and Simulation, 81, 1461-1481. https://doi.org/10.1080/00949655.2010.491827
  7. Carlin BP and Louis TA (2001). Bayes and Empirical Bayes Methods for Data Analysis (2nd ed), Chapman and Hall, Boca Raton.
  8. Castillo NO, Gomez HW, and Bolfarine H (2011). Epsilon Birnbaum-Saunders distribution family: properties and inference, Statistical Papers, 52, 871-883. https://doi.org/10.1007/s00362-009-0293-x
  9. Chib S and Greenberg E (1995). Understanding the metropolis-Hastings algorithm, The American Statistician, 49, 327-335.
  10. Cooner F, Banerjee S, Carlin BP, and Sinha D (2007). Flexible cure rate modeling under latent activation schemes, Journal of the American Statistical Association, 102, 560-572. https://doi.org/10.1198/016214507000000112
  11. Cordeiro GM, Cintra RJ, Rego LC, and Ortega EMM (2012). The McDonald normal distribution, Pakistan Journal of Statistics and Operation Research, 8, 301-329. https://doi.org/10.18187/pjsor.v8i3.510
  12. Cordeiro GM and Lemonte AJ (2011). The ${\beta}$-Birnbaum-Saunders distribution: an improved distribution for fatigue life modeling, Computational Statistics and Data Analysis, 55, 1445-1461. https://doi.org/10.1016/j.csda.2010.10.007
  13. Cordeiro GM and Lemonte AJ (2014). The exponentiated generalized Birnbaum-Saunders distribution, Applied Mathematics and Computation, 247, 762-779. https://doi.org/10.1016/j.amc.2014.09.054
  14. Cordeiro GM, Lemonte AJ, and Ortega EMM (2013). An extended fatigue life distribution, Statistics, 47, 626-653. https://doi.org/10.1080/02331888.2011.617447
  15. Cordeiro GM, Ortega EMM, and Nadarajah S (2010). The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347, 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
  16. Cowles MK and Carlin BP (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review, Journal of the American Statistical Association, 91, 883-904. https://doi.org/10.1080/01621459.1996.10476956
  17. Fachini JB, Ortega EMM, and Cordeiro GM (2014). A bivariate regression model with cure fraction, Journal of Statistical Computation and Simulation, 84, 1580-1595. https://doi.org/10.1080/00949655.2012.755531
  18. Farewell VT (1982). The use of mixture models for the analysis of survival data with long-term survivors, Biometrics, 1041-1046.
  19. Gelfand AE, Dey DK, and Chang H (1992). Model determination using predictive distributions with implementation via sampling based methods (with discussion). In JM Bernardo, JO Berger, AP Dawid, and AFM Smith (Eds), Bayesian Statistics 4 (pp. 7-167), Oxford University Press, New York.
  20. Hashimoto EM, Ortega EMM, Cordeiro GM, and Cancho VG (2014). The Poisson Birnbaum-Saunders model with long-term survivors, Statistics, 48, 1394-1413. https://doi.org/10.1080/02331888.2013.822503
  21. Hashimoto EM, Ortega EMM, Cordeiro GM, and Cancho VG (2015). A new long-term survival model with interval-censored data, Sankhya B, 77, 207-239. https://doi.org/10.1007/s13571-015-0102-6
  22. Ibrahim JG, Chen MH, and Sinha D (2001). Bayesian Survival Analysis, Springer-Verlag, New York.
  23. Kundu D, Kannan N, and Balakrishnan N (2008). On the hazard function of Birnbaum-Saunders distribution and associated inference, Computational Statistics and Data Analysis, 52, 2692-2702. https://doi.org/10.1016/j.csda.2007.09.021
  24. Lanjoni BR, Ortega EMM, and Cordeiro GM (2016). Extended Burr XII regression models: theory and applications, Journal of Agricultural Biological and Environmental Statistics, 21, 203-224. https://doi.org/10.1007/s13253-015-0236-z
  25. Lemonte AJ (2013). A new extension of the Birnbaum-Saunders distribution, Brazilian Journal of Probability and Statistics, 27, 133-149. https://doi.org/10.1214/11-BJPS160
  26. Longini IM and Halloran ME (1996). A frailty mixture model for estimating vaccine efficacy, Journal of the Royal Statistical Society Series C Applied Statistics, 45, 165-173.
  27. Maller RA and Zhou X (1996). Survival Analysis with Long-Term Survivors, Wiley, New York.
  28. Ortega EMM, Cancho VG, and Paula GA (2009). Generalized log-gamma regression models with cure fraction, Lifetime Data Analysis, 15, 79-106. https://doi.org/10.1007/s10985-008-9096-y
  29. Ortega EMM, Cordeiro GM, Campelo AK, Kattan MW, and Cancho VG (2015). A power series beta Weibull regression model for predicting breast carcinoma, Statistics in Medicine, 34, 1366-1388. https://doi.org/10.1002/sim.6416
  30. Ortega EMM, Cordeiro GM, Hashimoto EM, and Suzuki AK (2017). Regression models generated by gamma random variables with long-term survivors, Communications for Statistical Applications and Methods, 24, 43-65. https://doi.org/10.5351/CSAM.2017.24.1.043
  31. Ortega EMM, Cordeiro GM, and Lemonte AJ (2012). A log-linear regression model for the ${\beta}$-Birnbaum-Saunders distribution with censored data, Computational Statistics Data Analysis, 56, 698-718. https://doi.org/10.1016/j.csda.2011.09.018
  32. Peng Y and Dear KB (2000). A nonparametric mixture model for cure rate estimation, Biometrics, 56, 237-243. https://doi.org/10.1111/j.0006-341X.2000.00237.x
  33. Price DL and Manatunga AK (2001). Modelling survival data with a cured fraction using frailty models, Statistics in Medicine, 20, 1515-1527. https://doi.org/10.1002/sim.687
  34. Saavedra del Aguila J, Heiffig-del Aguila LS, Sasaki FF, Tsumanuma GM, das Gracas Ongarelli M, Spoto MHF, Jacomino AP, Ortega EMM, and Kluge RA (2010). Postharvest modifications of mechanically injured bananas, Revista Iberoamericana de Tecnologia Postcosecha, 10, 73-85.
  35. Spiegelhalter DJ, Best NG, Carlin BP, and van der Linde A (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
  36. Spiegelhalter DJ, Thomas A, Best N, and Lunn D (2007). OpenBUGS user manual version 3.0.2, Retrieved July 2, 2017, from http://mathstat.helsinki.fi/openbugs
  37. Suzuki AK, Cancho VG, and Louzada F (2016). The Poisson-Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics, Statistical Papers, 57, 133-159. https://doi.org/10.1007/s00362-014-0649-8
  38. Sy JP and Taylor JM (2000). Estimation in a Cox proportional hazards cure model, Biometrics, 56, 227-236. https://doi.org/10.1111/j.0006-341X.2000.00227.x
  39. Tsodikov AD, Ibrahim JG, and Yakovlev AY (2003). Estimating cure rates from survival data: an alternative to two-component mixture models, Journal of the American Statistical Association, 98, 1063-1078. https://doi.org/10.1198/01622145030000001007
  40. Watson GN (1995). A Treatise on the Theory of Bessel Functions (2nd ed), Cambridge University Press, Cambridge.
  41. Yu B and Peng Y (2008). Mixture cure models for multivariate survival data, Computational Statistics and Data Analysis, 52, 1524-1532. https://doi.org/10.1016/j.csda.2007.04.018