DOI QR코드

DOI QR Code

의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment

  • 김현아 (한국패션산업연구원 연구개발본부) ;
  • 김승진 (영남대학교 융합섬유공학과)
  • Kim, Hyun-ah (Korea Research Institute For Fashion Industry) ;
  • Kim, Seung-jin (Department of Textile Engineering and Technology, Yeungnam University)
  • 투고 : 2016.11.23
  • 심사 : 2017.03.13
  • 발행 : 2017.06.30

초록

본 연구에서는 직/편물 8종을 대상으로 이들 수직방향과 수평방향 수분이동특성 측정방법에 따른 소재들의 수분이동 특성을 분석하였다. 또한, 8종의 시편의 MMT에 의한 건조특성을 수직 건조 측정 결과와 비교하여 논의하였다. 수평수분이동 방법인 MMT 시험 결과는 수직법인 바이렉 방법의 결과와 유사한 거동을 나타내었다. 대나무, 린넨 및 면/나일론 복합 소재는 드롭법의 흡수시간은 짧았으며, 표면의 낮은 접촉각 및 직물의 높은 다공성에 기인한 것으로 판단되며, 친수성 스테이플 섬유의 구조와 상관이 있을 것으로 보인다. MMT에 의한 건조특성은 니트 및 대나무 직물의 최대 흡수반경이 가장 우수했으며, 수식 건조법에 비해 차이를 나타내었다. MMT 방법의 건조속도는 직물의 두께와 포화수분 흡수율과 높은 상관성을 가졌으며, 회귀계수는 각각 0.9와 0.88이었다. 이는 직물의 두께가 얇을수록 위킹 및 건조특성이 우수하며, 기능성 소재기획시 착용 내구성을 판단하는데 중요함을 의미한다. 또한 상이한 섬유소재, 실 및 구조의 소재에 대한 수분이동특성(위킹, 건조)는 측정 방법에 따라 다른 결과를 나타내었다.

In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

키워드

참고문헌

  1. Au, K. F. (2011). Advances in Knitting Technology 1st, Woodhead Publishing limited cambridge, UK. ISBN: 9780081017173
  2. AATCC Test Method 195-2009. (2009). Liquid Moisture Management Properties of Textile Fabrics.
  3. Das, A., & Alagirusamy R. (2010). Science in clothing comfort, Woodhead Publishing India PVT Ltd. ISBN: 9781845697891
  4. Das, B., Das, A., Kothari, V. K., Fanguiero, R., & Araujo, M. (2007). Moisture transmission through textiles. Part I: Processes involved in moisture transmission and the factors at play. AUTEX Research Journal, 7(2), 100-110.
  5. Fangueiro, R., Filgueiras, A., Soutinho, F., & Meidi, X. (2010). Wicking behavior and drying capability of functional knitted fabrics, Textile Research Journal, 80(15), 1522-1530. doi: 10.1177/0040517510361796
  6. Guo, Y., Li, Y., Tokura, H., Wong, T., Chung, J., Wong, A. S. W., Gohel, M. D. I., & Leung, P. H. M. (2008) Impact of fabric moisture transport properties on physiological responses when wearing protective clothing, Textile Research Journal, 78(12), 1057-1069. doi: 10.1177/0040517508090496
  7. Hsieh, Y. L. (1995). Liquid transport in fabric structures. Textile Research Journal, 65(5), 299-307. doi:10.1177 /004051759506500508 https://doi.org/10.1177/004051759506500508
  8. Hu, J., Li, Y., Yeung, K. W., Wong, A. S. W., & Xu, W. (2005). Moisture management tester : a method to characterize fabric liquid moisture management properties, Textile Research Journal, 75(1), 57-62. doi: 10.1177/004051750507500111
  9. Hu, J. Y., Li, Y., & Yeung, K. W. (2006). Clothing Biosensory Engineering. Cambridge : woodhead.
  10. Kim, H. A. (2014). Effect of hollow composite yarn characteristics to the comfort property of fabrics for high emotional garment, Korean Society for Emotional and Sensibility, 17(4), 71-78. doi: 10.14695/KJSOS. 2014.117.4.71
  11. Kim, H. A., & Kim, S. J. (2016). Moisture and thermal permeability of the hollow textured PET imbedded woven fabrics for high emotional garment. Fibers and Polymers, 17(3), 427-438. doi: 10.1007/s12221-016- 5942-9
  12. Kim, H. A., & Kim, S. J. (2016). Moisture response transformable property of intelligent coolness knitted fabrucs for sportswear clothings, Autex Research Journal, Published online: doi: 10.1515/aut-2016-0013
  13. Kim, H. A. (2017). Physical properties of ring, compact and air vortex yarns made of PTT/wool/modal and wearing comfort of their knitted fabrics for high emotional garments, The Journal of Textile Institute, Published online: 18 Jan 2017. doi: 1010.1080/ 00405000.2016.1275444
  14. Kim, H. A., & Kim, S. J. (2016). Far-infrared emission characteristics and wear comfort property of ZrCimbedded heat knitted fabrics for emotional garments, Autex Research Journal, Published online: doi: 10.1515/aut-2016-0017
  15. Laing, R. M., Wilson, C. A., Gore, S. E., Carr, D. J., & Niven, B. E. (2007). Determining the drying time of apparel fabrics. Textile Research Journal, 77(8), 583-590. doi:10.1177/0040517507078232
  16. Mahbub, R. F., Wang, L., Arnold, L., Kaneslingam, S., & Padhye, T. (2014). Thermal comfort properties of kevlar and kevlar/wool blends, Textile Research Journal, 82(19), 2094-2102. doi: 10.1177/004051751 4532157
  17. Ozkan, E. T., & Meriç, B. (2015). Thermophysiological comfort properties of different knitted fabrics used in cycling clothes, Textile Research Journal, 85(1), 62-70. doi: 10.1177/0040517514530033
  18. Supuren, G., Oglakcioglu, N., Ozdil, N., & Marmarali, A. (2011). Moisture management and thermal absorptivity properties of double-face knitted fabrics, Textile Research Journal, 81(13), 1320-1330. doi: 10.1177/0040517511402122
  19. Troynikov, O., & Wardiningsih, W. (2011). Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer, Textile Research Journal, 81(6), 621-631. doi: 10.1177/0040517510392461
  20. Yanilmaz, M., & Kalaoglu, F. (2012). Investigation of wicking, wetting and drying properties of acrylic knitted fabrics, Textile Research Journal, 82(8) 820-831, 2012. doi: 10.1177/0040517511435851
  21. Zupin, Z., Hladnik, A., & Dimitrovski, K. (2012). Prediction of one-layer woven fabrics air permeability using porosity parameters, Textile Research Journal, 82(21), 117-128. doi: 10.1177/0040517511424529