References
- Akbarov, S.D., Guliyev, H.H. and Yahnioglu, N. (2016), "Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach", Struct. Eng. Mech., 57(2), 239-263. https://doi.org/10.12989/sem.2016.57.2.239
- Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013
- Asghari, M., Kahrobaiyan, M. and Ahmadian, M. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
- Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermoelectro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
- Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1972b), "Theory of micromorphic materials with memory", Int. J. Eng. Sci., 10(7), 623-641. https://doi.org/10.1016/0020-7225(72)90089-4
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal continuum field theories, New York, Springer-Verlag.
- Fakhrabadi, M.M.S. and Yang, J. (2015), "Comprehensive nonlinear electromechanical analysis of nanobeams under DC/AC voltages based on consistent couple-stress theory", Compos. Struct., 132, 1206-1218. https://doi.org/10.1016/j.compstruct.2015.07.046
- Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981
- Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Switzerland: Springer International Publishing.
- Hadi, A., Rastgoo, A., Daneshmehr, A.R. and Ehsani, F. (2013), "Stress and strain analysis of functionally graded rectangular plate with exponentially varying properties", Indian J. Mater. Sci., 2013, Article ID: 206239 Doi: 10.1155/2013/206239.
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids. Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
- Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127
- He, L., Lou, J., Zhang, E., Wang, Y. and Bai, Y. (2015), "A sizedependent four variable refined plate model for functionally graded microplates based on modified couple stress theory", Compos. Struct., 130, 107-115. https://doi.org/10.1016/j.compstruct.2015.04.033
- Hosseini, M., Shishesaz, M., Tahan, K.N. and Hadi, A. (2016), "Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials", Int. J. Eng. Sci., 109, 29-53. https://doi.org/10.1016/j.ijengsci.2016.09.002
- Jabbari, M., Nejad, M.Z., and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
- Jomehzadeh, E., Noori, H. and Saidi, A. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Phys. E., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005
- Kahrobaiyan, M., Asghari, M., Rahaeifard, M. and Ahmadian, M. (2010), "Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Keivani, M., Koochi, A. and Abadyan, M. (2016), "Coupled effects of surface energy and size dependency on the stability of nanotweezers using GDQ method", Microsyst. Technol., 1-14.
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Sizedependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
- Kolter, W. (1964), "Couple stresses in the theory of elasticity", Proc Konink Nederl Akad Wetensch, 67, 17-44.
- Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phy. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Technol., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006
- Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031
- Lu, C., Lim, C.W. and Chen, W. (2009a), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Meth. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555
- Lu, C., Lim, C.W. and Chen, W. (2009b), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Ma, H., Gao, X.L. and Reddy, J. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. and Phy. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), 1650054. https://doi.org/10.1142/S175882511650054X
- Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. An., 11(1), 415-448. https://doi.org/10.1007/BF00253946
- Mohammad-Abadi, M. and Daneshmehr, A. (2015), "Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories", Int. J. Eng. Sci., 87, 83-102. https://doi.org/10.1016/j.ijengsci.2014.11.003
- Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids. Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017
- Nejad, M.Z. and Rahimi, G.H. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays, 4(3), 131-140.
- Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014a), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid. Mech., 6(4), 366-377.
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014b), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
- Nejad, M.Z. and Fatehi, P. (2015) "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
- Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
- Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017a), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
- Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, H. (2017b), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9(1), 1750011. https://doi.org/10.1142/S1758825117500119
- Nie, G. and Zhong, Z, (2010), "Dynamic analysis of multidirectional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Park, S. and Gao, X. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
- Shu, C. and Chew, Y. (1998), "On the equivalence of generalized differential quadrature and highest order finite difference scheme", Comput. Method. Appl. M., 155(3), 249-260. https://doi.org/10.1016/S0045-7825(97)00150-3
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021
- Simsek, M. and Reddy, J. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Steinberg, M.A. (1986), "Materials for aerospace", Scientific American, 255(4), 67-72.
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. An., 11(1), 385-414. https://doi.org/10.1007/BF00253945
- Wang, Z.h., Wang, X.h., Xu, G.d., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration", Int. J. Eng. Sci., 48(12), 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Xue, C.X. and Pan, E. (2013), "On the longitudinal wave along a functionally graded magneto-electro-elastic rod", Int. J. Eng. Sci., 62, 48-55. https://doi.org/10.1016/j.ijengsci.2012.08.004
- Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yin, L., Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta. Mech. Solida. Sin., 23(5), 386-393. https://doi.org/10.1016/S0894-9166(10)60040-7
- Zenkour, A.M. (2013), "Bending of FGM plates by a simplified four-unknown shear and normal deformations theory", Int. J. Appl. Mech., 5(02), 1350020. https://doi.org/10.1142/S1758825113500208
- Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica., 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
- Zhao, L., Chen, W. and Lu, C. (2012), "Symplectic elasticity for bi-directional functionally graded materials", J. Mech. Mater. Struct., 54, 32-42.
- Ziegler, T. and Kraft, T. (2014), "Functionally graded materials with a soft surface for improved indentation resistance: Layout and corresponding design principles", Comp. Mater. Sci., 86, 88-92. https://doi.org/10.1016/j.commatsci.2014.01.032
Cited by
- Thermomechanical Creep Analysis of FGM Thick Cylindrical Pressure Vessels with Variable Thickness vol.10, pp.1, 2017, https://doi.org/10.1142/s1758825118500084
- Cross-Sectional Design and Analysis of Multiscale Carbon Nanotubes-Reinforced Composite Beams and Blades vol.10, pp.3, 2017, https://doi.org/10.1142/s1758825118500321
- Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.407
- A nonlinear viscoelastic model for NSGT nanotubes conveying fluid incorporating slip boundary conditions vol.25, pp.12, 2019, https://doi.org/10.1177/1077546319839882
- A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2017, https://doi.org/10.1007/s40430-019-1799-3
- Mechanical Behavior of Functionally Graded Nano-Cylinders Under Radial Pressure Based on Strain Gradient Theory vol.35, pp.4, 2017, https://doi.org/10.1017/jmech.2018.10
- Elastic waves in fluid-conveying carbon nanotubes under magneto-hygro-mechanical loads via a two-phase local/nonlocal mixture model vol.6, pp.8, 2017, https://doi.org/10.1088/2053-1591/ab2396
- Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2017, https://doi.org/10.1142/s1758825119500868
- Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field vol.12, pp.2, 2017, https://doi.org/10.1142/s1758825120500210
- Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads vol.18, pp.suppl1, 2017, https://doi.org/10.1080/14484846.2018.1481562
- Elastic state of functionally graded curved beam on the plane stress state subject to thermal load vol.48, pp.6, 2020, https://doi.org/10.1080/15397734.2019.1660890
- Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189
- Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.103