DOI QR코드

DOI QR Code

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc (Department of Architectural Engineering, Sejong University) ;
  • Kim, Nam-Il (Department of Architectural Engineering, Sejong University) ;
  • Lee, Jaehong (Department of Architectural Engineering, Sejong University)
  • Received : 2015.06.05
  • Accepted : 2017.02.24
  • Published : 2017.07.25

Abstract

The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  2. Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42(8), 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
  3. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  4. Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001
  5. Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001), "Logic circuits with carbon nanotube transistors", Science, 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824
  6. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.D., Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M. (1999), "Carbon nanotube actuators", Science, 284(5418), 1340-1344. https://doi.org/10.1126/science.284.5418.1340
  7. Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "A Timoshenko beam model for vibration analysis of chiral singlewalled carbon nanotubes", Physica E, 59, 186-191. https://doi.org/10.1016/j.physe.2014.01.020
  8. Chen, W.K. (1987), Structural Stability: Theory Implementation, Prentice Hall, Englewood Cliffs, N.J.
  9. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  10. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0
  11. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
  12. Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Model., 37(10), 6929-6939. https://doi.org/10.1016/j.apm.2013.01.043
  13. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  15. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  16. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
  17. Frankland, S.J.V., Caglar, A., Brenner, D.W. and Griebel, M. (2002), "Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotubepolymer interfaces", J. Phys. Chem. B, 106(12), 3046-3048. https://doi.org/10.1021/jp015591+
  18. Hierold, C., Jungen, A., Stampfer, C. and Helbling, T. (2007), "Nano electromechanical sensors based on carbon nanotubes", Sens. Actuator A-Phys., 136(1), 51-61. https://doi.org/10.1016/j.sna.2007.02.007
  19. Hoseinzadeh, M.S. and Khadem, S.E. (2014), "A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotubes", Physica E, 57, 6-11. https://doi.org/10.1016/j.physe.2013.10.009
  20. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
  21. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  22. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
  23. Khademolhosseini, F., Rajapakse, R.K.N.D. and Nojeh, A. (2010), "Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models", Comput. Mater. Sci., 48(4), 736-742. https://doi.org/10.1016/j.commatsci.2010.03.021
  24. Kim, P. and Lieber, C.M. (1999), "Nanotube nanotweezers", Science, 286(5447), 2148-2150. https://doi.org/10.1126/science.286.5447.2148
  25. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  26. Li, X.F., Wang, B.L. and Mai, Y.W. (2008), "Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity", J. Appl. Phys., 103(7), 074309. https://doi.org/10.1063/1.2903444
  27. Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Mater., 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043
  28. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
  29. Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of carbon nanotubes with attached buckyballs at tip", Mech. Res. Commun. 38(1), 62-67. https://doi.org/10.1016/j.mechrescom.2010.11.004
  30. Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound Vib., 331(23), 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005
  31. Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  32. Murmu, T. and Pradhan, S.C. (2009b), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E, 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
  33. Murmu, T. and Pradhan, S.C. (2009c), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
  34. Mustapha, K.B. and Zhong, Z.W. (2010), "Free transverse vibration of an axially loaded non-prismatic single walled carbon nanotube embedded in a two-parameter elastic medium", Comput. Mater. Sci., 50(2), 742-751. https://doi.org/10.1016/j.commatsci.2010.10.005
  35. Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021
  36. Narendar, S. and Gopalakrishnan, S. (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43(6), 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026
  37. Nguyen, N.T., Kim, N.I. and Lee, J. (2015), "Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams", Finite Elem. Anal. Des., 106, 65-72. https://doi.org/10.1016/j.finel.2015.07.012
  38. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  39. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
  40. Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008
  41. Pradhan, S.C. and Murmu, T. (2009), "Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", J. Appl. Phys., 105(12), 124306. https://doi.org/10.1063/1.3151703
  42. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E, 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
  43. Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052-1056. https://doi.org/10.1016/j.commatsci.2010.11.001
  44. Reddy, J.N. (2005), An Introduction to the Finite Element Method. McGraw-Hill Science/Engineering/Math, New York, NY.
  45. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  46. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  47. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  48. Simsek, M and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  49. Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  50. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  51. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  52. Wang, C.M., Kitipornchai, S., Lim, C. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
  53. Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Exact solutions for Timoshenko beams on elastic foundations using green's functions", Mech. Based Des. Struct. Mech., 26(1), 101-113. https://doi.org/10.1080/08905459808945422
  54. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  55. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
  56. Wu C.P. and Lai W.W. (2015), "Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a singlewalled carbon nanotube embedded in an elastic medium and with various boundary conditions", Comp. Struct., 122, 390-404. https://doi.org/10.1016/j.compstruct.2014.11.073