Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42(8), 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001
- Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001), "Logic circuits with carbon nanotube transistors", Science, 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824
- Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.D., Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M. (1999), "Carbon nanotube actuators", Science, 284(5418), 1340-1344. https://doi.org/10.1126/science.284.5418.1340
- Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "A Timoshenko beam model for vibration analysis of chiral singlewalled carbon nanotubes", Physica E, 59, 186-191. https://doi.org/10.1016/j.physe.2014.01.020
- Chen, W.K. (1987), Structural Stability: Theory Implementation, Prentice Hall, Englewood Cliffs, N.J.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
- Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Model., 37(10), 6929-6939. https://doi.org/10.1016/j.apm.2013.01.043
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Frankland, S.J.V., Caglar, A., Brenner, D.W. and Griebel, M. (2002), "Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotubepolymer interfaces", J. Phys. Chem. B, 106(12), 3046-3048. https://doi.org/10.1021/jp015591+
- Hierold, C., Jungen, A., Stampfer, C. and Helbling, T. (2007), "Nano electromechanical sensors based on carbon nanotubes", Sens. Actuator A-Phys., 136(1), 51-61. https://doi.org/10.1016/j.sna.2007.02.007
- Hoseinzadeh, M.S. and Khadem, S.E. (2014), "A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotubes", Physica E, 57, 6-11. https://doi.org/10.1016/j.physe.2013.10.009
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
- Khademolhosseini, F., Rajapakse, R.K.N.D. and Nojeh, A. (2010), "Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models", Comput. Mater. Sci., 48(4), 736-742. https://doi.org/10.1016/j.commatsci.2010.03.021
- Kim, P. and Lieber, C.M. (1999), "Nanotube nanotweezers", Science, 286(5447), 2148-2150. https://doi.org/10.1126/science.286.5447.2148
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Li, X.F., Wang, B.L. and Mai, Y.W. (2008), "Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity", J. Appl. Phys., 103(7), 074309. https://doi.org/10.1063/1.2903444
- Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Mater., 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
- Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of carbon nanotubes with attached buckyballs at tip", Mech. Res. Commun. 38(1), 62-67. https://doi.org/10.1016/j.mechrescom.2010.11.004
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound Vib., 331(23), 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005
- Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
- Murmu, T. and Pradhan, S.C. (2009b), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E, 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
- Murmu, T. and Pradhan, S.C. (2009c), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
- Mustapha, K.B. and Zhong, Z.W. (2010), "Free transverse vibration of an axially loaded non-prismatic single walled carbon nanotube embedded in a two-parameter elastic medium", Comput. Mater. Sci., 50(2), 742-751. https://doi.org/10.1016/j.commatsci.2010.10.005
- Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021
- Narendar, S. and Gopalakrishnan, S. (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43(6), 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026
- Nguyen, N.T., Kim, N.I. and Lee, J. (2015), "Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams", Finite Elem. Anal. Des., 106, 65-72. https://doi.org/10.1016/j.finel.2015.07.012
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008
- Pradhan, S.C. and Murmu, T. (2009), "Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", J. Appl. Phys., 105(12), 124306. https://doi.org/10.1063/1.3151703
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E, 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052-1056. https://doi.org/10.1016/j.commatsci.2010.11.001
- Reddy, J.N. (2005), An Introduction to the Finite Element Method. McGraw-Hill Science/Engineering/Math, New York, NY.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
- Simsek, M and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Wang, C.M., Kitipornchai, S., Lim, C. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
- Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Exact solutions for Timoshenko beams on elastic foundations using green's functions", Mech. Based Des. Struct. Mech., 26(1), 101-113. https://doi.org/10.1080/08905459808945422
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wu C.P. and Lai W.W. (2015), "Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a singlewalled carbon nanotube embedded in an elastic medium and with various boundary conditions", Comp. Struct., 122, 390-404. https://doi.org/10.1016/j.compstruct.2014.11.073