DOI QR코드

DOI QR Code

Biological Activities of Kombucha by Stater Culture Fermentation with Gluconacetobacter spp.

Gluconacetobacter spp. 스타터로 발효한 콤부차의 생리활성

  • Ko, Hye-Myoung (Department of Food Science & Nutrition, Jeju National University) ;
  • Shin, Seung-Shick (Department of Food Science & Nutrition, Jeju National University) ;
  • Park, Sung-Soo (Department of Food Science & Nutrition, Jeju National University)
  • 고혜명 (제주대학교 식품영양학과) ;
  • 신승식 (제주대학교 식품영양학과) ;
  • 박성수 (제주대학교 식품영양학과)
  • Received : 2017.05.11
  • Accepted : 2017.05.24
  • Published : 2017.07.31

Abstract

In this study, we investigated citrus Kombucha (CK) produced by three different bacteria strains (Gluconacetobacter xylinus, Gluconacetobacter medellinensis, and Gluconobacter oxydans; named as CK-MOX) identified from traditional Kombucha. During fermentation, the pH level of CK-MOX was gradually reduced, and total acidity slightly increased. Antioxidant activity, measured by DPPH, ABTS, and oxygen radical absorbance capacity assays, markedly increased after fermentation. Moreover, fermented CK-MOX (Day15) exhibited anti-proliferative and anti-migratory activities against EJ human bladder carcinoma cells. Western immunoblot assays showed that treatment with CK-MOX significantly up-regulated phospho-extracellular signaling kinase (ERK) levels. To distinguish whether or not up-regulation of phospho-ERK is the cause or effect, we investigated the viability of EJ cells in the presence of U0126, a mitogen activated protein kinase/ERK kinase 1/2 inhibitor. Pre-treatment with U0126 rescued cells from CK-MOX-induced cell death, which indicates phospho-ERK may be a key regulator in the mechanism of CK-MOX-induced apoptosis of EJ bladder cancer cells. In conclusion, CK-MOX, fermented by a defined composition of bacterial starters, shows antioxidant capacity and anti-cancer activity against EJ bladder cancer cells.

본 연구는 감귤 콤부차의 산업화를 위한 발효 균주 표준화를 위하여 콤부차에서 분리된 3가지 균주(Gluconacetobacter xylinus, Gluconacetobacter medellinensis, Gluconobacter oxydans)를 이용한 감귤 발효액(CK-MOX)의 기능적 특성을 탐색하고자 하였다. CK-MOX 제조 후 15일간 3일 마다 샘플링을 하였으며, 발효 기간에 따른 pH, 산도, 항산화 능력을 평가하였다. 발효에 따라 pH는 감소하였고, 산도는 증가하였다. DPPH, ABTS 라디칼 소거능, ORAC assay를 통한 항산화 능력 측정 결과 발효에 따라 항산화 능력이 향상하는 것으로 나타났으며, 방광암 세포주(EJ 세포)의 생존 억제 및 이동 억제 효과가 있는 것으로 나타났다. 특히 CK-MOX로 유도된 EJ 세포의 사멸에 MAPK pathway의 중추적인 역할을 하는 것으로 알려진 ERK의 발현이 깊이 관여하는 것으로 나타났다.

Keywords

References

  1. Greenwalt CJ, Steinkraus KH, Ledford RA. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63: 976-981. https://doi.org/10.4315/0362-028X-63.7.976
  2. Jayabalan R, Malbaša RV, Loncar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13: 538-550. https://doi.org/10.1111/1541-4337.12073
  3. Bauer‐Petrovska B, Petrushevska‐Tozi L. 2000. Mineral and water soluble vitamin content in the Kombucha drink. Int J Food Sci Technol 35: 201-205. https://doi.org/10.1046/j.1365-2621.2000.00342.x
  4. Pokalwar SU, Mishra MK, Manwar AV. 2010. Production of cellulose by Gluconacetobacter sp.. Recent Res Sci Technol 2: 14-19.
  5. Castro C, Cleenwerck I, Trcek J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux JL, Ganan P. 2013. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63: 1119-1125. https://doi.org/10.1099/ijs.0.043414-0
  6. Battikh H, Chaieb K, Bakhrouf A, Ammar E. 2013. Antibacterial and antifungal activities of black and green kombucha teas. J Food Biochem 37: 231-236. https://doi.org/10.1111/j.1745-4514.2011.00629.x
  7. Srihari T, Satyanarayana U. 2012. Changes in free radical scavenging activity of kombucha during fermentation. J Pharm Sci Res 4: 1978-1981.
  8. Bhattacharya S, Gachhui R, Sil PC. 2011. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology 18: 221-234. https://doi.org/10.1016/j.pathophys.2011.02.001
  9. Hirata T, Fujii M, Akita K, Yanaka N, Ogawa K, Kuroyanagi M, Hongo D. 2009. Identification and physiological evaluation of the components from Citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorg Med Chem 17: 25-28. https://doi.org/10.1016/j.bmc.2008.11.039
  10. Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem 104: 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
  11. Silalahi J. 2002. Anticancer and health protective properties of citrus fruit components. Asia Pac J Clin Nutr 11: 79-84. https://doi.org/10.1046/j.1440-6047.2002.00271.x
  12. Kim CI, Shin SS, Park SS. 2016. Growth inhibition and induction of apoptosis in human bladder cancer cells induced by fermented citrus Kombucha. J Korean Soc Food Sci Nutr 45: 1422-1429. https://doi.org/10.3746/jkfn.2016.45.10.1422
  13. Chung N, Jo Y, Gao Y, Gu SY, Jeong YJ, Kwon JH. 2015. Comparison of physicochemical properties and antioxidant activities of naturally-fermented commercial rice vinegars produced in Korea, China, and Japan. J Korean Soc Food Sci Nutr 44: 1799-1805. https://doi.org/10.3746/jkfn.2015.44.12.1799
  14. Choi IY, Song YJ, Lee WH. 2010. DPPH radical scavenging effect and antimicrobial activities of some herbal extracts. Korean J Hort Sci Technol 28: 871-876.
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  17. Jayabalan R, Marimuthu S, Swaminathan K. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem 102: 392-398. https://doi.org/10.1016/j.foodchem.2006.05.032
  18. Rani MU, Rastogi NK, Appaiah KAA. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract-an agro-industry waste. J Microbiol Biotechnol 21: 739-745. https://doi.org/10.4014/jmb.1012.12026
  19. Kim SH, Kim YM. 2007. Determination of the antioxidant capacity of Korean ginseng using an ORAC assay. J East Asian Soc Diet Life 17: 393-401.
  20. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H. 2003. NF-${\kappa}B$ promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278: 21631-21638. https://doi.org/10.1074/jbc.M300609200
  21. Srihari T, Arunkumar R, Arunakaran J, Satyanarayana U. 2013. Downregulation of signalling molecules involved in angiogenesis of prostate cancer cell line (PC-3) by kombucha (lyophilized). Biomed Prev Nutr 3: 53-58. https://doi.org/10.1016/j.bionut.2012.08.001
  22. Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. 2005. Computational modelling of the receptor- tyrosine-kinase-activated MAPK pathway. Biochem J 392: 249-261. https://doi.org/10.1042/BJ20050908
  23. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF. 2001. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56: 127-155. https://doi.org/10.1210/rp.56.1.127