DOI QR코드

DOI QR Code

The Regulation Mechanisms of Kinesin Motor Proteins

Kinesin 모터 단백질의 조절 기전

  • Park, Sang Jun (Department of Pharmaceutical Engineering, Inje University) ;
  • Seog, Joung-Su (Department of Nursing, Suseong College) ;
  • Moon, Il Soo (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine)
  • 박상준 (인제대학교 제약공학과) ;
  • 석정수 (수성대학교 간호학과) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Received : 2017.04.17
  • Accepted : 2017.04.27
  • Published : 2017.07.30

Abstract

Proper intracellular transport is essential for normal cell function. Intracellular transport is mediated by microtubule-dependent molecular motor proteins, as well as kinesin and cytoplasmic dynein, which move their cargo along long, microtubule tracks in cells. Kinesins are ATP-dependent plus-end-directed motor proteins in the intracellular transport of organelles, vesicles, RNA complexes, and protein complexes. The mislocalization of these different types of cargo has been linked to cell dysfunction and degeneration. The cargo transport of kinesins can be described by the following steps: binding to the appropriate cargo and/or adaptor proteins, activation of the kinesin's motility and movement along the microtubule, and the release of the cargo at the correct destination. Recently, several studies have revealed the mechanisms for the regulation of kinesin motor activity, including cargo loading and unloading. Intracellular cargo transport is also modulated by adaptor proteins, which link the kinesins to their cargo. The regulatory proteins, which include protein kinases and phosphatases, regulate kinesin motor activity directly through the phosphorylation or dephosphorylation of kinesins and indirectly through the modification of adaptor proteins, such as c-Jun NH-terminal kinase-interacting proteins, or of the microtubule network. These findings lay the groundwork for understanding how kinesins are differentially engaged in intracellular cargo transport. In addition, understanding the regulatory mechanisms of each kinesin is an area of key interest within cell biology and neurophysiology. In this study, we reviewed kinesins' regulation proteins and discuss how their regulation affects cargo recognition and transport.

세포내 수송 기구는 세포의 작용과 생존에 필수적이다. 이러한 세포내 수송은 긴 미세소관을 따라서 운반체를 운반하는 미세소관 의존 분자 모터 단백질인 kinesin과 cytoplasmic dynein에 의하여 이루어진다. Kinesin은 ATP 의존적으로 미세소관의 plus-end방향으로 이동하는 모터 단백질로 세포내 소기관, 분비소포, RNA 복합체, 단백질 복합체들을 수송한다. Kinesins에 의한 다양한 운반체의 수송의 이상은 세포의 기능 이상과 연관된다. Kinesins에 의한 운반체 수송의 기본 단계는: 운반체 혹은 adaptor 단백질과의 결합, kinesin 기능 활성화와 미세소관을 따라서 이동, 그리고 올바른 위치에서 운반체와의 분리 단계로 나뉘어 진다. 최근의 연구결과들에서 kinesin 모터 기능 활성화, 운반체와의 결합, 운반체와의 해리 기전이 확인되고 있으며 세포내 운반체 수송은 kinesin과 운반체를 연결하는 adaptor 단백질에 의하여서도 조절된다. 단백질 인산화 효소, 탈 인산화 효소를 포함하는 kinesin 모터 활성 조절 단백질들은 kinesin의 인산화 혹은 탈 인산화를 통하여 직접적으로 세포내 수송을 조절하거나, c-Jun NH-terminal kinase-interacting proteins (JIPs)와 같은 adaptor 단백질들과 미세소관의 간접적 수식을 통하여 세포내 수송을 조절하기도 한다. 이러한 연구결과들은 세포의 기능과 형태 유지에 관여하는 kinesin에 의한 다양한 세포내 수송 조절 기전을 이해하는데 기초적인 토대가 된다. 또한 각각의 kinesin에 대한 조절 기전을 밝히는 것은 세포생물학과 신경생리학을 이해하는데 중요하므로 본 종설에서는 kinesin에 의한 세포내 수송을 조절하는 단백질과 kinesin과 수송체와의 결합이 어떻게 조절되는지를 고찰하고자 한다.

Keywords

References

  1. Althaus, F. R. and Richter, C. 1987. ADP-ribosylation of proteins. Enzymology and biological significance. Mol. Biol. Biochem. Biophys. 37, 1-237.
  2. Arimura, N., Kimura, T., Nakamuta, S., Taya, S., Funahashi, Y., Hattori, A., Shimada, A., Menager, C., Kawabata, S., Fujii, K., Iwamatsu, A., Segal, R. A., Fukuda, M. and Kaibuchi, K. 2009. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675-686. https://doi.org/10.1016/j.devcel.2009.03.005
  3. Castle, M. J., Perlson, E., Holzbaur, E. L. and Wolfe, J. H. 2014. Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and is trafficked in a highly motile Rab7-positive compartment. Mol. Ther. 22, 554-566. https://doi.org/10.1038/mt.2013.237
  4. Caviston, J. P. and Holzbaur, E. L. 2006. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530-537. https://doi.org/10.1016/j.tcb.2006.08.002
  5. De Wever, V., Nasa, I., Chamousset, D., Lloyd, D., Nimick, M., Xu, H., Trinkle-Mulcahy, L. and Moorhead, G. B. 2014. The human mitotic kinesin KIF18A binds protein phosphatase 1 (PP1) through a highly conserved docking motif. Biochem. Biophys. Res. Commun. 453, 432-437. https://doi.org/10.1016/j.bbrc.2014.09.105
  6. DeBerg, H. A., Blehm, B. H., Sheung, J., Thompson, A. R., Bookwalter, C. S., Torabi, S. F., Schroer, T. A., Berger, C. L., Lu, Y., Trybus, K. M. and Selvin, P. R. 2013. Motor domain phosphorylation modulates kinesin-1 transport. J. Biol. Chem. 288, 32612-32621. https://doi.org/10.1074/jbc.M113.515510
  7. Dolma, K., Iacobucci, G. J., Hong Zheng, K., Shandilya, J., Toska, E., White, J. A. 2nd., Spina, E. and Gunawardena, S. 2014. Presenilin influences glycogen synthase kinase-3 ${\beta}$ (GSK-$3{\beta}$) for kinesin-1 and dynein function during axonal transport. Hum. Mol. Genet. 23, 1121-1133. https://doi.org/10.1093/hmg/ddt505
  8. Embi, N., Rylatt, D. B. and Cohen, P. 1980. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519-527.
  9. Espeut, J., Gaussen, A., Bieling, P., Morin, V., Prieto, S., Fesquet, D., Surrey, T. and Abrieu, A. 2008. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol. Cell 29, 637-643. https://doi.org/10.1016/j.molcel.2008.01.004
  10. Fu, M. M. and Holzbaur, E. L. 2014. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564-574. https://doi.org/10.1016/j.tcb.2014.05.002
  11. Gibbs, K. L., Greensmith, L. and Schiavo, G. 2015. Regulation of axonal transport by protein kinases. Trends Biochem. Sci. 40, 597-610. https://doi.org/10.1016/j.tibs.2015.08.003
  12. Guillaud, L., Wong, R. and Hirokawa, N. 2008. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat. Cell Biol. 10, 19-29. https://doi.org/10.1038/ncb1665
  13. Hafner, J., Mayr, M. I., Mockel, M. M. and Mayer, T. U. 2014. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A. Nat. Commun. 5, 4397. https://doi.org/10.1038/ncomms5397
  14. He, M., Subramanian, R., Bangs, F., Omelchenko, T., Liem, K. F. Jr., Kapoor, T. M. and Anderson, K. V. 2014. The kinesin- 4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663-672. https://doi.org/10.1038/ncb2988
  15. Hirokawa, N. and Tanaka, Y. 2015. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16-25. https://doi.org/10.1016/j.yexcr.2015.02.016
  16. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. https://doi.org/10.1126/science.279.5350.519
  17. Hirokawa, N. and Takemura, R. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214. https://doi.org/10.1038/nrn1624
  18. Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. https://doi.org/10.1016/j.neuron.2010.09.039
  19. Homma, N., Takei, Y., Tanaka, Y., Nakata, T., Terada, S., Kikkawa, M., Noda, Y. and Hirokawa, N. 2003. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229-239. https://doi.org/10.1016/S0092-8674(03)00522-1
  20. Hood, E. A., Kettenbach, A. N., Gerber, S. A. and Compton, D. A. 2012. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol. Biol. Cell 23, 2264-2274. https://doi.org/10.1091/mbc.E11-12-1013
  21. Ichinose, S., Ogawa, T. and Hirokawa, N. 2015. Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and $CaMKII{\alpha}$. Neuron 87, 1022-1035. https://doi.org/10.1016/j.neuron.2015.08.008
  22. Kahn, O. I., Sharma, V., Gonzalez-Billault, C. and Baas, P. W. 2015. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol. Biol. Cell 26, 66-77. https://doi.org/10.1091/mbc.E14-08-1313
  23. Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384. https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  24. Kawano, Y., Yoshimura, T., Tsuboi, D., Kawabata, S., Kaneko-Kawano, T., Shirataki, H., Takenawa, T. and Kaibuchi, K. 2005. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell Biol. 25, 9920-9935. https://doi.org/10.1128/MCB.25.22.9920-9935.2005
  25. Kawauchi, T. 2014. Cdk5 regulates multiple cellular events in neural development, function and disease. Dev. Growth Differ. 56, 335-348. https://doi.org/10.1111/dgd.12138
  26. Koch, P., Gehringer, M. and Laufer, S. A. 2015. Inhibitors of c-Jun N-terminal kinases: an update. J. Med. Chem. 58, 72-95. https://doi.org/10.1021/jm501212r
  27. Kurowska, M., Goudin, N., Nehme, N. T., Court, M., Garin, J., Fischer, A., de Saint Basile, G. and Menasche, G. 2012. Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879-3889. https://doi.org/10.1182/blood-2011-09-382556
  28. Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, S. A., Goldstein, L. S., Goodson, H. V., Hirokawa, N., Howard, J., Malmberg, R. L., McIntosh, J. R., Miki, H., Mitchison, T. J., Okada, Y., Reddy, A. S., Saxton, W. M., Schliwa, M., Scholey, J. M., Vale, R. D., Walczak, C. E. and Wordeman, L. 2004. A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22. https://doi.org/10.1083/jcb.200408113
  29. Lee, P. L., Ohlson, M. B. and Pfeffer, S. R. 2015. Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering. Elife 4, eLife. 06029.
  30. Liu, Y. C., Couzens, A. L., Deshwar, A. R. B., McBroom- Cerajewski, L. D., Zhang, X., Puviindran, V., Scott, I. C., Gingras, A. C., Hui, C. C. and Angers, S. 2014. The PPFIA1- PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Sci. Signal 7, ra117. https://doi.org/10.1126/scisignal.2005608
  31. Manser, C., Guillot, F., Vagnoni, A., Davies, J., Lau, K. F., McLoughlin, D. M., De Vos, K. J. and Miller, C. C. 2012. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene 31, 2773-2782. https://doi.org/10.1038/onc.2011.437
  32. Mayr, M. I., Hümmer, S., Bormann, J., Gruner, T., Adio, .S, Woehlke, G. and Mayer, T. U. 2007. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17, 488-498.
  33. Midorikawa, R., Takei, Y. and Hirokawa, N. 2004. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125, 371-383.
  34. Miki, H., Setou, M., Kaneshiro, K. and Hirokawa, N. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011. https://doi.org/10.1073/pnas.111145398
  35. Miller, C. C., Ackerley, S., Brownlees, J., Grierson, A. J., Jacobsen, N. J. and Thornhill, P. 2002. Axonal transport of neurofilaments in normal and disease states. Cell Mol. Life Sci. 59, 323-330. https://doi.org/10.1007/s00018-002-8425-7
  36. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. and Brady, S. T. 2002. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281-293. https://doi.org/10.1093/emboj/21.3.281
  37. Niwa, S. 2015. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis. Anat. Sci. Int. 90, 1-6. https://doi.org/10.1007/s12565-014-0259-5
  38. Niwa, S., Tanaka, Y. and Hirokawa, N. 2008. $KIF1B{\beta}$ and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 10, 1269-1279. https://doi.org/10.1038/ncb1785
  39. Noda, Y., Niwa, S., Homma, N., Fukuda, H., Imajo-Ohmi, S. and Hirokawa, N. 2012. Phosphatidylinositol 4-phosphate 5-kinase alpha ($PIPK{\alpha}$) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches. Proc. Natl. Acad. Sci. USA 109, 1725-1730. https://doi.org/10.1073/pnas.1107808109
  40. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. and Hirokawa, N. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780. https://doi.org/10.1016/0092-8674(95)90538-3
  41. Oro, A. E. 2007. The primary cilia, a 'Rab-id' transit system for hedgehog signaling. Curr. Opin. Cell Biol. 19, 691-696. https://doi.org/10.1016/j.ceb.2007.10.008
  42. Phang, H. Q., Hoon, J. L., Lai, S. K., Zeng, Y., Chiam, K. H., Li, H. Y. and Koh, C. G. 2014. POPX2 phosphatase regulates the KIF3 kinesin motor complex. J. Cell Sci. 127, 727-739. https://doi.org/10.1242/jcs.126482
  43. Plotnikov, A., Zehorai, E., Procaccia, S. and Seger, R. 2011. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta. 1813, 1619-1633. https://doi.org/10.1016/j.bbamcr.2010.12.012
  44. Prekeris, R., Klumperman, J. and Scheller, R. H. 2000. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell 6, 1437-1448. https://doi.org/10.1016/S1097-2765(00)00140-4
  45. Rahman, A., Friedman, D. S. and Goldstein, L. S. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403. https://doi.org/10.1074/jbc.273.25.15395
  46. Roskoski, R. Jr. 2012. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105-143. https://doi.org/10.1016/j.phrs.2012.04.005
  47. Schafer, B., Gotz, C. and Montenarh, M. 2008. The kinesin I family member KIF5C is a novel substrate for protein kinase CK2. Biochem. Biophys. Res. Commun. 375, 179-183. https://doi.org/10.1016/j.bbrc.2008.07.107
  48. Schonteich, E., Wilson, G. M., Burden, J., Hopkins, C. R., Anderson, K., Goldenring, J. R. and Prekeris, R. 2008. The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling. J. Cell Sci. 121, 3824-3833. https://doi.org/10.1242/jcs.032441
  49. Setou, M., Nakagawa, T., Seog, D. H. and Hirokawa, N. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802. https://doi.org/10.1126/science.288.5472.1796
  50. Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptor- interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  51. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K. and Neumann, H. 2006. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J. 20, 2573-2575. https://doi.org/10.1096/fj.06-6679fje
  52. Stenmark, H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525. https://doi.org/10.1038/nrm2728
  53. Takeda, S., Yamazaki, H., Seog, D. H., Kanai, Y., Terada, S. and Hirokawa, N. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265. https://doi.org/10.1083/jcb.148.6.1255
  54. Teng, J., Rai, T., Tanaka, Y., Takei, Y., Nakata, T., Hirasawa, M., Kulkarni, A. B. and Hirokawa, N. 2005. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat. Cell Biol. 7, 474-482. https://doi.org/10.1038/ncb1249
  55. Ueno, H., Huang, X., Tanaka, Y. and Hirokawa, N. 2011. KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Dev. Cell 20, 60-71. https://doi.org/10.1016/j.devcel.2010.11.008
  56. Vagnoni, A., Rodriguez, L., Manser, C., De Vos, K. J. andMiller, C. C. 2011. Phosphorylation of kinesin light chain1 at serine 460 modulates binding and trafficking of calsyntenin-1. J. Cell Sci. 124, 1032-1042. https://doi.org/10.1242/jcs.075168
  57. Watanabe, T., Kakeno, M., Matsui, T., Sugiyama, I., Arimura, N., Matsuzawa, K., Shirahige, A., Ishidate, F., Nishioka, T., Taya, S., Hoshino, M. and Kaibuchi, K. 2015. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J. Cell Biol. 210, 737-751. https://doi.org/10.1083/jcb.201412075
  58. Waters, K. M., Le Marchand, L., Kolonel, L. N., Monroe, K. R., Stram, D. O., Henderson, B. E. and Haiman, C. A. 2009. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol. Biomarkers Prev. 18, 1285-1289. https://doi.org/10.1158/1055-9965.EPI-08-1142
  59. Whitmarsh, A. J. 2006. The JIP family of MAPK scaffold proteins. Biochem. Soc. Trans. 34, 828-832. https://doi.org/10.1042/BST0340828
  60. Xing, B. M., Yang, Y. R., Du, J. X., Chen, H. J., Qi, C., Huang, Z. H., Zhang, Y. and Wang, Y. 2012. Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J. Neurosci. 32, 14709-14721. https://doi.org/10.1523/JNEUROSCI.1634-12.2012
  61. Xu, J., Reddy, B. J., Anand, P., Shu, Z., Cermelli, S., Mattson, M. K., Tripathy, S. K., Hoss, M. T., James, N. S., King, S. J., Huang, L., Bardwell, L. and Gross, S. P. 2012. Casein kinase 2 reverses tail-independent inactivation of kinesin-1. Nat. Commun. 3, 754. https://doi.org/10.1038/ncomms1760
  62. Yi, P., Chew, L. L., Zhang, Z., Ren, H., Wang, F., Cong, X., Zheng, L., Luo, Y., Ouyang, H., Low, B. C. and Zhou, Y. T. 2015. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol. Biol. Cell 26, 29-42. https://doi.org/10.1091/mbc.E14-03-0797