DOI QR코드

DOI QR Code

The Physiological Responses of Spotted Seahorse Hippocampus kuda to Low-pH Water

사육수의 pH변화가 복해마(Hippocampus kuda)에 미치는 생리적 영향

  • Park, Cheonman (Department of Marine life Science, Jeju National University) ;
  • Kim, Ki-hyuk (Department of Marine life Science, Jeju National University) ;
  • Moon, Hye-Na (Department of Marine life Science, Jeju National University) ;
  • Yeo, In-Kyu (Department of Marine life Science, Jeju National University)
  • 박천만 (제주대학교 해양생명과학과) ;
  • 김기혁 (제주대학교 해양생명과학과) ;
  • 문혜나 (제주대학교 해양생명과학과) ;
  • 여인규 (제주대학교 해양생명과학과)
  • Received : 2017.06.01
  • Accepted : 2017.07.04
  • Published : 2017.07.30

Abstract

The rising concentration of atmospheric carbon dioxide is causing ocean acidification and global warming. The seahorse is an important species in marine ecosystems and fishery markets, however, their populations have recently decreased due to ocean acidification. As a result, we examined changes in the physiological responses of the spotted seahorse Hippocampus kuda when it was exposed to acidic sea water (pH 6.0, 6.5, and 7.0) and normal seawater (pH 8.0 as the control) over a period of 15 days. As the pH decreased, the seahorses' body weight and length also decreased. Components in body of ash, the crude lipids and crude proteins also differed significantly with changes in pH, due to stress caused by the seahorses' exposure to the acidic water conditions. The superoxide dismutase levels were significantly lower in the pH 6.0 and 6.5 groups than they were in the pH 7.0 and pH 8.0 groups. However, the catalase and glutathione levels were significantly higher in the acidic sea water groups. We suggest that decreasing the pH level of rearing water induces a stress response in H. kuda, damaging their ability to maintain their homeostasis and energy metabolism. Antioxidant enzymes are generally sensitive to acidic stress; in this study, the antioxidant activity was significantly affected by the pH level of the rearing water. These results indicate that physiological stress, induced by exposure to acidification, induces an antioxidant reaction, which can reduce general components in the body and the growth of H. kuda.

대기의 이산화탄소의 농도 증가는 해양산성화와 지구온난화를 유발하는 것으로 알려져 있다. 해마는 해양생태계 및 수산자원생물로서 중요한 종으로 알려져 있지만, 최근 해양산성화로 인하여 개체수가 감소되고 있는 실정이다. 따라서 본 연구에서는 멸종 위기 종인 복해마(Hippocampus kuda)에 미치는 생리적 영향을 조사하기 위해서 사육수의 산성조건인 pH 6.0, 6.5, 7.0 및 자연해수(pH 8.0)의 환경에서 복해마(H. kuda)를 15일 동안 사육 후 체내 조성 변화 및 항산화 효소 활성 변화에 대하여 조사를 실시하였다. 복해마(H. kuda)의 크기 및 성장은 대조군인 pH 8.0을 제외한 실험군에서는 pH가 저하함에 따라 감소하는 경향을 나타내었다. 체내 조성성분인 회분, 조지방 및 조단백 또한 pH 저하에 따라 농도의존적으로 감소하는 것이 관찰되었다. SOD, CAT 및 GSH와 같은 항산화 효소의 분석 결과, SOD활성의 경우, pH 저하에 따라 농도의존적으로 감소하지만, 이와 상반되게 CAT 및 GSH에서는 pH저하에 따라 활성이 농도의존적으로 증가하는 결과가 나타내었다. 이것은 복해마(H. kuda)가 사육수의 pH 저하에 따른 체내 항상성을 유지하는 과정 중 스트레스가 야기되어 에너지 대사가 손상된 것으로 추정된다. 항산화효소는 일반적으로 산성화 스트레스에 민감하게 작용하는데 본 연구에서도 사육수의 pH 변화에 따라 항산화 효소작용이 유의하게 변화하였다. 이러한 결과로 복해마(H. kuda)에 있어서 산성화 노출을 통한 생리학적 스트레스가 항산화 반응 및 체내 성분과 성장을 저해하는 것으로 여겨진다.

Keywords

References

  1. Baeck, S. K. 2012. Combined effect of Cu and temperature on physiological and biochemical change of rock fish, Sebastes schlegeli. Master. Thesis, Pukyong National University, Pusan, Korea.
  2. Brett, J. R. and Groves, T. D. D. 1979. Physiological energetics, pp. 279-352. In: Hoar, W. S., Randall, D. J. and Brett, J. R(eds.) Fish physiology. Academic press, New York.
  3. Bonga, S. W. 1997. The stress response in fish. Physiol. Rev. 77, 591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  4. Calabrese, A. and Davis, H. C. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol. Bull. 131, 427-436. https://doi.org/10.2307/1539982
  5. Choi, Y. U., Rho, S., Jung, M. M., Lee, Y. D. and Noh, G. A. 2006. Parturition and early growth of Crowned Seahorse, Hippocampus coronatus in Korea. J. Aquaculture 19, 109-118.
  6. Dalton, D. A., Langeberg, L. and Treneman, N. C. 1993. Correlations between the ascorbate glutathione pathway and effectiveness in legume root nodules. Physiol. Plant. 87, 365-370. https://doi.org/10.1111/j.1399-3054.1993.tb01743.x
  7. Forman, H. J. and Fridovich, I. 1973. Superoxide dismutase: a comparison of rate constant. Arch. Biochem. Biophys. 158, 396. https://doi.org/10.1016/0003-9861(73)90636-X
  8. Foster, S. J. and Vincent, A. C. J. 2004. Life history and ecology of seahorses: implications for conservation and management. J. Fish Biol. 65, 1-61.
  9. Hilomen‐Garcia, G. V., Delos Reyes, R. and Garcia, C. M. H. 2003. Tolerance of seahorse Hippocampus kuda (Bleeker) juveniles to various salinities. J. Appl. Ichthyol. 19, 94-98. https://doi.org/10.1046/j.1439-0426.2003.00357.x
  10. Horwitz, W. and Latimer, G. 2005. AOAC-Association of official analytical chemists, pp. 75-76, Official Methods of Analysis of AOAC International 18th ed., Gaithersburg, Maryland, USA.
  11. Ishibashi, Y., Ekawa, H., Hirata, H. and Kumai, H. 2002. Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fish Sci. 68, 1374-1383. https://doi.org/10.1046/j.1444-2906.2002.00577.x
  12. Jo, S. H. and Kim, H. Y. 2014. Changes in hematological responses and antioxidative enzyme activities of japanese eel Anguilla japonica exposed to Elevated Ambient Nitrite. Kor. J. Fish Aquat. Sci. 47, 860-868.
  13. Kim, I. S. and Lee, W. O. 1995. First record of the seahorse fish, Hippocampus trimaculatus (Pisces: Syngnathidae) from Korea. Kor. J. Zool. 38, 74-77.
  14. Knutzen, J. 1981. Effects of decreased pH on marine organisms. Mar. Pollut. Bull. 12, 25-29. https://doi.org/10.1016/0025-326X(81)90136-3
  15. Kuwatani, Y. and Nishii, T. 1969. Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull. Jpn. Soc. Sci. Fish. 35, 242-250.
  16. Lin, Q., Lu, J., Gao, Y., Shen, L., Cai, J. and Luo, J. 2006. The effect of temperature on gonad, embryonic development and survival rate of juvenile seahorses, Hippocampus kuda Bleeker. Aquaculture 254, 701-713. https://doi.org/10.1016/j.aquaculture.2005.11.005
  17. Lin, Q., Zhang, D. and Lin, J. 2009. Effects of light intensity, stocking density, feeding frequency and salinity on the growth of sub-adult seahorses Hippocampus erectus Perry, 1810. Aquaculture 292, 111-116. https://doi.org/10.1016/j.aquaculture.2009.03.028
  18. Lischka, S., Büdenbender, J., Boxhammer, T. and Riebesell, U. 2011. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8, 919. https://doi.org/10.5194/bg-8-919-2011
  19. Liu, H., Zhang, J. F., Shen, H., Wang, X. R. and Wang, W. M. 2005. Impact of copper and Its EDTA complex on the glutathione dependent antioxidant system in freshwater Fish (Carassius auratus). Bull. Environ. Contam. Toxicol. 74, 1111-1117. https://doi.org/10.1007/s00128-005-0696-x
  20. Lourie, S. A., Foster, S. J., Cooper, E. W. T. and Vincent, A. C. J. 2004. A guide to the identification of seahorses, pp. 114, Project Seahorse and TRAFFIC North America, Washington D.C.
  21. Magee, J. A., Obedzinski, M., McCormick, S. D. and Kocik, J. F. 2003. Effects of episodic acidification on Atlantic salmon (Salmo salar) smolts. Can. J. Fish Aquat. Sci. 60, 214-221. https://doi.org/10.1139/f03-015
  22. Martinez-Cardenas, L. and Purser, G. J. 2011. Effect of temperature on growth and survival in cultured early juvenile pot-bellied seahorses, Hippocampus abdominalis. J. World Aquac. Soc. 42, 854-862. https://doi.org/10.1111/j.1749-7345.2011.00526.x
  23. Moon, S. D., Lee, J. H, Sung, C. G., Choi, T. S., Lee, K. T., Lee, J. S. and Kang, S. G. 2013. Cellular energy allocation of a marine polychaete species (Perinereis aibuhitensis) exposed to dissolving carbon dioxide in seawater. J. Kor. Soc. Mar. Environ. Energy 16, 9-16. https://doi.org/10.7846/JKOSMEE.2013.16.1.9
  24. Moore, A. 1994. An electrophysiological study on the effects of pH on olfaction in mature male Atlantic salmon (Salmo salar) parr. J. Fish Biol. 45, 493-502. https://doi.org/10.1111/j.1095-8649.1994.tb01331.x
  25. Nardocci, G., Navarro, C., Cortes, P. P., Imarai, M., Montoya, M., Valenzuela, B. and Fernandez, R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish Shellfish Immunol. 40, 531-538. https://doi.org/10.1016/j.fsi.2014.08.001
  26. Parihar, M. S., Dubey, A. K., Javeri, T. and Prakash, P. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J. Therm. Biol. 21, 323-330. https://doi.org/10.1016/S0306-4565(96)00016-2
  27. Parihar, M. S., Javeri, T., Hemnani, T., Dubey, A. K. and Prakash, P. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J. Therm. Biol. 22, 151-156. https://doi.org/10.1016/S0306-4565(97)00006-5
  28. Ryu, B., Qian, Z. J. and Kim, S. K. 2010. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-kB/P38 kinase. Peptides 31, 79-87. https://doi.org/10.1016/j.peptides.2009.10.019
  29. Saunders, R. L., Henderson, E. B., Harmon, P. R., Johnston, C. E. and Eales, J. G. 1983. Effects of low environmental pH on smolting of Atlantic salmon (Salmo salar). Can. J. Fish Aquatu. Sci. 408, 1203-1211.
  30. Schreck, C. B. 1982. Stress and rearing of salmonids. Aquaculture 28, 241-249. https://doi.org/10.1016/0044-8486(82)90026-6
  31. She, M., He, G. X., Chen, H. and Jin, Z. J. 1995. An experimental study of five species halobios on anti-aging activity. Chinese J. Mar. Drugs 53, 30-34.
  32. Shin, M. J, Kwon, C. O., Lee, J. E. and Seo, E. W. 2010. Effects of cadmium exposure on tissues of carassius auratus. J. Life Sci. 20, 1490-1497. https://doi.org/10.5352/JLS.2010.20.10.1490
  33. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. 2007. Climate change 2007: The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, pp. 97, Cambridge University Press, New York, U. S. A.
  34. Vincent, A. C., Foster, S. J. and Koldewey, H. J. 2011. Conservation and management of seahorses and other Syngnathidae. J. Fish Biol. 78, 1681-1724. https://doi.org/10.1111/j.1095-8649.2011.03003.x
  35. Vincent, A. C. 1996. The International trade in Seahorses, pp. 4-163. TRAFFIC International, Cambridge, U. K.
  36. Waring, C. P., Stagg, R. M. and Poxton, M. G. 1996. Physiological responses to handling in the turbot. J. Fish Biol. 48, 161-173. https://doi.org/10.1111/j.1095-8649.1996.tb01110.x
  37. Wedemeyer, G. A. and Yasutake, T. W. 1977. Clinical methods for the assessment of the effects of environmental stress on fish health. U. S. Fish Wildl. Ser. Tech. Pap. 89, 1-14.
  38. White, C. C., Viernes, H., Krejsa, C. M., Botta, D. and Kavanagh, T. J. 2003. Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal. Biochem. 318, 175-180. https://doi.org/10.1016/S0003-2697(03)00143-X
  39. Wu, G. Y. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids. 37, 1-17.
  40. Xu, Y. M., Chen, J. W. and Guo, R. 1994. Studies on the phospholipids and fatty acids in traditional chinese medicinal materials Hippocampus and Syngnathus. Chinese J. Mar. Drugs 49, 14-18.
  41. Yue, X. L., Yang, T. W. and Wei, B. H. 1995. Trace elements and amino acids analysis of Hippocampus and Solenognathus. J. Tradit. Chin. Med. 7, 18-19.
  42. Zhang, J., Shen, H., Wang, X., Wu, J. and Xue, Y. 2004. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55, 167-174. https://doi.org/10.1016/j.chemosphere.2003.10.048
  43. Zhu, A. M. 2005. Pharmacologic researches on ethanol extracts from Hippocampus. Chinese Pharmaceutical Affairs 19, 23-24.
  44. Zhang, Z. H., Xu, G. J., Xu, L. S. and Wang, Q. 1994. Inhibitory effects of Hippocampus SPP. extracts on L-glutamic acid induced Ca influx in rats' neurons. Chinese J. Mar. Drugs 52, 6-9.