DOI QR코드

DOI QR Code

Chitosan as a Flocculant: An Approach to Improve its Solubility for Efficient Harvesting of Microalgae

  • Sajjad, Attia (Department of Environmental Sciences, COMSATS Institute of Information Technology) ;
  • Rizwan, Muhammad (Department of Environmental Sciences, University of Haripur) ;
  • Mujtaba, Ghulam (Department of Energy and Environment Engineering, Dawood University of Engineering and Technology) ;
  • Rashid, Naim (Department of Chemical Engineering, COMSATS Institute of Information Technology)
  • 투고 : 2017.02.23
  • 심사 : 2017.05.22
  • 발행 : 2017.08.01

초록

Chitosan is a promising flocculant for microalgae harvesting, but its scale-up application is not economically supported yet. Low solubility of chitosan in microalgae suspension demands high dosage (as a flocculant) to destabilize the cells, and thus, increases the cost of microalgae harvesting. This study identifies efficient solvents for the chitosan, and optimizes the concentration of solvents and chitosan dose to improve the harvesting efficiency. Chitosan was dissolved in different acids, and subsequently used as a flocculant. The flocculant efficacy was measured in terms of harvesting efficiency and reduction in chemical oxygen demand (COD) of the microalgae suspension. It was found that chitosan dissolved in 0.05 M HCl showed the highest harvesting efficiency ($89{\pm}0.87%$) at only 30 mg/L of dosage. In comparison, 270 mg/L of $FeCl_3{\cdot}6H_2O$ was required to attain $86{\pm}0.083%$ of the harvesting efficiency. $H_2SO_4$ dissolved chitosan required high flocculant dose (150 mg/L) and resulted in relatively low harvesting efficiency ($77{\pm}0.11%$). It was concluded that the efficacy of chitosan is solvent dependent, and the selection of proper solvent can decrease the dosage requirement for microalgae harvesting.

키워드

참고문헌

  1. Granados, M. R., Acian, F. G., Gamez, C., Fernaindez-Sevilla, J. M. and Molina Grima, E., "Evaluation of Flocculants for the Recovery of Freshwater Microalgae," Bioresource Technol., 118, 102-110(2012). https://doi.org/10.1016/j.biortech.2012.05.018
  2. Kanghoon, C., Jihyun, L., Jaemin, J. and Jin, W. K., "Optimization of Hot-water Extraction Conditions of Polyphenolic Compounds from Lipid Extracted Microalga," Korean Chem Eng Res., 54(3), 310-314(2016). https://doi.org/10.9713/kcer.2016.54.3.310
  3. Feng, Y., Li, C. and Zhang, D., "Lipid Production of Chlorella Vulgaris Cultured in Artificial Wastewater Medium," Bioresource. Technol., 102, 101-105(2011). https://doi.org/10.1016/j.biortech.2010.06.016
  4. Yong, B. P., Hankwon, L. and Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-oil from Marine Algae," Korean Chem Eng Res., 54(1), 94-100(2016). https://doi.org/10.9713/kcer.2016.54.1.94
  5. Birjandi, N., Younesi, H., Bahramifar, N., Ghafari, S., Zinatizadeh, A. A. and Sethupathi, S., "Optimization of Coagulation-flocculation Treatment on Paper-recycling Wastewater," J. Environ. Sci., 48, 1573-1582(2013).
  6. Chisti, Y., "Biodiesel from Microalgae," Biotechnol. Adv., 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  7. Demirci, S., Erdogan, B. and Ozcimder, R., "Wastewater Treatment at the Petroleum Refinery, Kirikkale, Turkey Using Some Coagulants and Turkish Clays as Coagulant Aids," J. Water Res., 32, 1495-1499(1998).
  8. Harith, Z. T., Yusoff, F. M. and Mohamed, M. S., "Effect of Different Flocculants on the Flocculation Performance of Microalgae," J. Biotechnol., 21, 5971-5978(2009).
  9. Sema, S., Rosa, T. and Carles, I. S., "Harvesting the Microalgae Phaeodactylum tricornutum with Polyaluminum Chloride, Aluminium Sulphate, Chitosan and Alkalinity-induced Flocculation," J. Appl. Phycol., 24, 1067-1080(2012). https://doi.org/10.1007/s10811-011-9736-6
  10. Huang, C., Chen, S. and Pan, J. R., "Optimal Condition for Modification of Chitosan: a Biopolymer for Coagulation of Colloidal Particles," Water Res., 34, 1057-1062(2000). https://doi.org/10.1016/S0043-1354(99)00211-0
  11. Heasman, M., Diemar, J., Connor, W., Sushames, T., Foulkes, L. and Nell, J. A., "Development of Extended Shelf-life Microalgae Concentrate Diets Harvested by Centrifugation for Bivalve Molluscs a Summary," Aqua Res., 31, 637-659(2000). https://doi.org/10.1046/j.1365-2109.2000.00492.x
  12. Kim, S. H., Moon, B. H. and Leeb, H. I., "Effects of pH and Dosage on Pollutant Removal and Floc Structure During Coagulation," J. Microchem., 68, 197-203(2001). https://doi.org/10.1016/S0026-265X(00)00146-6
  13. Lee, A., Lewis, D. and Ashman, P., "Microbial Flocculation, a Potentially Low-cost Harvesting Technique for Marine Microalgae for the Production of Biodiesel," J. Appl. Phycol., 21, 559-567(2009). https://doi.org/10.1007/s10811-008-9391-8
  14. Naim, R., Muhammad, S. R. and Jong, I. H., "Use of Chitosan Acid Solutions to Improve Separation Efficiency for Harvesting of the Microalga Chlorella vulgaris," Chemical Eng J., 226, 238-242(2013). https://doi.org/10.1016/j.cej.2013.04.062
  15. Lee, H. S., Parameswaran, P., Kato Marcus, A., Torres, C. I. and Rittmann, B. E., "Evaluation of Energy-conversion Efficiencies in Microbial Fuel Cells (MFCs) Utilizing Fermentable and Nonfermentable Substrates," J. Water Res., 42, 1501-1510(2008). https://doi.org/10.1016/j.watres.2007.10.036
  16. Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S. and Yoon, B. D., "Effects of Harvesting Method and Growth Stage on the Flocculation of the Green Alga," Botryococcus braunii, J. Appl. Microbiol., 27, 14-18(1998). https://doi.org/10.1046/j.1472-765X.1998.00375.x
  17. Naim, R., Muhammad, S. R. and Jong, I. H., "Rapid harvesting of Freshwater Microalgae Using Chitosan," Process Biochem., 48, 1107-1110(2013). https://doi.org/10.1016/j.procbio.2013.04.018
  18. Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubious, N., "Biofuels from Microalgae," Biotechnol. Prog., 24, 815-820(2008).
  19. McGarry, M. G., "Algal Flocculation with Aluminum Sulfate and Polyelectrolytes," J. Water Pol., 42, 191-201(1970).
  20. Moheimani, N. R. and Borowitzka, M. A., "The Long-term Culture of the Coccolithophore Pleurochrysis Carterae (Haptophyta) in Outdoor Raceway Ponds," J. Appl Phycol., 18, 703-712(2006). https://doi.org/10.1007/s10811-006-9075-1
  21. Renault, F., Sancey, B., Badot, P. M. and Crini, G., "Chitosan for Coagulation/Flocculation Processes: An Eco-friendly Approach," J. Chem., 45, 1337-1348(2009).
  22. Schenk, P. M., Thomas-Hall, S. R. and Stephens, E., "Second Generation Biofuels: High-efficiency Microalgae for Biodiesel Production," Bio. Energ. Res., 1, 20-43(2008).
  23. Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P., "A Look Back at the US Department of Energy's Aquatic Species Program, Biodiesel from Algae," National Ren. Energ. Res., 248-282(1998).
  24. Sheng, Q. Z., "Effect of Organic and Inorganic Acids on Thermosensitive Hydrogel," J. Sol-Gel. Sci. Technol., 50, 111-118(2009). https://doi.org/10.1007/s10971-008-1891-0
  25. Sionkowska, A., Wisniewski, M., Skopinska, J., Kennedy, C. J. and Wess, T. J., "The Photochemical Stability of Collagen-chitosan Blends," J. Photochem. Photobiol., 162, 545-55(2004). https://doi.org/10.1016/S1010-6030(03)00397-6
  26. Papazi, A., Makridis, P., Divanach, P., "Harvesting Chlorella Using Cell Coagulants," J. Appl. Phycol., 22, 349-355(2010). https://doi.org/10.1007/s10811-009-9465-2
  27. Park, J., Craggs, B. K. and Shilton, R. J., "Wastewater Treatment High Rate Algal Ponds for Biofuel Production," Bioresource. Technol., 1, 35-42(2011).
  28. Uduman, N., Bourniquel, V., Danquah, M. K. and Hoadley, A. F. A., "A Parametric Study of Electrocoagulation as a Recovery Process of Marine Microalgae for Biodiesel Production," Chem. Eng. J., 174, 249-257(2011). https://doi.org/10.1016/j.cej.2011.09.012
  29. Wu, Y. B., Yu, S. H., Mi, F. L., Wu, C. W., Shyu, S. S., Peng, C. K. and Chao, A. C., "Preparation and Characterization on Mechanical and Antibacterial Properties of Chitosan Cellulose Blends," Carbohydrate Polymer., 57, 435-440(2004). https://doi.org/10.1016/j.carbpol.2004.05.013
  30. Ahmad, A. L., Mat Yasi, N. H. and Dere, C. J. C. J. K., "Optimization of Microalgae Coagulation Process Using Chitosan," J. Chem. Eng., 173, 879-882(2011). https://doi.org/10.1016/j.cej.2011.07.070
  31. Banerjee, C., Gupta, P., Mishra, S., Sen, G., Shukla, P. and Bandopadhya, R., "Study of Polyacrylamide Grafted Starch Based Algal and Flocculation Towards Applications in Algal Biomass Harvesting," J. Biol., 51, 456-461(2012).

피인용 문헌

  1. Effects of Flocculant Concentration and Temperature on the Membrane Separation Process in Microalgal Suspensions vol.45, pp.2, 2017, https://doi.org/10.1002/ceat.202100490