DOI QR코드

DOI QR Code

Mechanical Properties of High-Hardness TiNX Thin Films Deposited by Pure Nitrogen Plasma Using Magnetron Sputtering Deposition

마그네트론 스퍼터링 증착법을 사용하여 순수한 질소 플라즈마에 의해 성막된 고경도 TiNX 박막의 역학적 특성

  • Lee, Chang-Hyun (Department of Electronic & Electricity Engineering, Daegu Catholic University) ;
  • Rhee, Byung-Roh (Department of Applied Physics & Electronics, Sangji University) ;
  • Bae, Kang (Mijutech) ;
  • Park, Chang-Hwan (Department of Materials & Chemistries Engineering, Daegu Catholic University) ;
  • Kim, Hwa-Min (Department of Materials & Chemistries Engineering, Daegu Catholic University)
  • 이창현 (대구가톨릭대학교 전자전기공학과) ;
  • 이병로 (상지대학교 응용물리전자과) ;
  • 배강 ((주)미주테크) ;
  • 박창환 (대구가톨릭대학교 신소재화학공학과) ;
  • 김화민 (대구가톨릭대학교 신소재화학공학과)
  • Received : 2017.06.02
  • Accepted : 2017.06.15
  • Published : 2017.08.01

Abstract

TiN (titanium nitride) films were prepared using the RF magnetron sputtering technique. The films were deposited by pure $N_2$ plasma sputtering. Their mechanical properties, such as nano-indentation hardness, friction coefficient, and surface wettability, have been investigated. X-ray diffraction (XRD) studies revealed that the orientation of $TiN_X$ films changed towards the (111) orientation with decreasing working pressure due to a strong compressive stress during deposition. The strongest TiN (111) orientation was found when the film was deposited at a working pressure of 1 Pa. This film showed the largest hardness (16 GPa) and smallest friction coefficient (0.17) among the studied samples. Moreover, this film was found to be accompanied by a water-repellent surface with water contact angle more than $100^{\circ}$.

Keywords

References

  1. U. Beck, G. Reiners, U. Kopacz, and H. A. Jehn, Surf. Coat. Technol., 60, 389 (1993). [DOI: https://doi.org/10.1016/0257-8972(93)90119-9]
  2. J. E. Sundgren, Thin Solid Films, 128, 21 (1985). [DOI: https://doi.org/10.1016/0040-6090(85)90333-5]
  3. M. Wittmer and H. Melchior, Thin Solid Films, 93, 397 (1982). [DOI: https://doi.org/10.1016/0040-6090(82)90145-6]
  4. M. Stoiber, J. Wagner, C. Mitterer, K. Gammer, H. Hutter, C. Lugmair, and R. Kullmer, Surf. Coat. Technol., 174, 687 (2003). [DOI: https://doi.org/10.1016/S0257-8972(03)00353-0]
  5. F. Vaz, P. Machado, L. Rebouta, P. Cerqueira, Ph. Goudeau, J. P. Riviere, E. Alves, K. Pischow, and J. de Rijk, Surf. Coat. Technol., 174, 375 (2003). [DOI: https://doi.org/10.1016/S0257-8972(03)00711-4]
  6. S. J. Bull, D. S Rickerby, and A. Jain, Surf. Coat. Technol., 41, 269 (1990). [DOI: https://doi.org/10.1016/0257-8972(90)90138-3]
  7. M.Stoiber, E. Badisch, C. Lugmair, and C. Mitterer, Surf, Coat, Technol., 163, 451 (2003). [DOI: https://doi.org/10.1016/S0257-8972(02)00642-4]
  8. J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films, 197, 117 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90225-M]
  9. S. Y. Chun, J. Korean Phys. Soc., 52, 1227 (2008). https://doi.org/10.3938/jkps.52.1227
  10. M. GoTo, A. Kasahara, M. Tosa, J. Hobely, M. Kishimoto, K. Yoshihara, and H. Fukumura, J. Vac. Sci. Technol., A, 20, 1458 (2002). [DOI: http://dx.doi.org/10.1116/1.1487873]
  11. I. Petrov, L. Hultman, U. Helmersson, J. E. Sundgren, and J. E Greene, Thin Solid Films, 169, 299 (1989). [DOI: https://doi.org/10.1016/0040-6090(89)90713-X]
  12. H. Ljungcrantz, L. Hultman, and J. E. Sundgren, and L. Karlsson, J. Appl. Phys., 78, 832 (1995). [DOI: http://dx.doi. org/10.1063/1.360272]
  13. L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, and J. E. Greene, J. Appl. Phys., 61, 552 (1987). [DOI: http://dx.doi.org/10.1063/1.338257]