DOI QR코드

DOI QR Code

Piezoelectric Energy Harvesting Characteristics of Hard PZT Interdigitated Electrode (IDE) Unimorph Cantilever

Hard PZT IDE 유니몰프 캔틸레버의 압전 에너지 하베스팅 특성

  • Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Chang-il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Woon-ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Youn-woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Yong-ho (Department of Material Science and Engineering, Pusan University) ;
  • Jang, Yong-ho (Technology & Research Center, Senbool Corporation) ;
  • Choi, Beom-jin (Technology & Research Center, Senbool Corporation) ;
  • Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 김창일 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 박운익 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 박용호 (부산대학교 재료공학과) ;
  • 장용호 ((주)센불 기술연구소) ;
  • 최범진 ((주)센불 기술연구소) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Received : 2017.05.19
  • Accepted : 2017.06.29
  • Published : 2017.08.01

Abstract

A unimorph piezoelectric cantilever generator with an interdigitated electrode (IDE) was developed for vibration energy harvester applications driven in the longitudinal mode. Hard lead zirconate titanate (PZT) ceramic with a high $Q_m$ of 1,280 was used as the piezoelectric active material. Ten PZT sheets produced by tape casting were laminated and co-fired with an Ag/Pd IDE at $1,050^{\circ}C$ for 2 h. The approximately $280{\mu}m$-thick co-fired PZT laminate with the IDE was attached to a stainless steel substrate with an adhesive epoxy for the fabrication of an IDE unimorph cantilever. Its energy harvesting characteristics were evaluated: an output power of $1.1{\mu}W$ at 120 Hz across the resistive load of $700k{\Omega}$ was obtained, corresponding to a normalized power factor of $4.1{\mu}W/(G^2{\cdot}cm^3)$.

Keywords

References

  1. C. A. Howells, Energy Convers. Manage., 50, 1847 (2009). [DOI: http://doi.org/10.1016/j.enconman.2009.02.020]
  2. H. A. Sodano, D. J. Inman, and G. Park, J. Intell. Mater. Syst. Struct., 16, 799 (2005). [DOI: http://doi.org/10.1177/1045389X05056681]
  3. A. Erturk and D. J. Inman, Smart Mater. Struct., 18, 025009 (2009). [DOI: http://doi.org/10.1088/0964-1726/18/2/025009]
  4. H. A. Sodano, G. Park, and D. J. Inman, Strain, 40, 49 (2004). [DOI: http://doi.org/10.1111/j.1475-1305.2004.00120.x]
  5. W. Wang, J. Cao, C. R. Bowen, S. Zhou, and J. Lin, Energy, 118, 221 (2017). [DOI: http://doi.org/10.1016/j.energy.2016.12.035]
  6. R. Hosseini, M. Hamedi, J. Im, J. Kim, and J. Dayou, International Journal of Precision Engineering and Manufacturing, 18, 415 (2017). [DOI: http://doi.org/10.1007/s12541-017-0050-3]
  7. N. Chen, H. J. Jung, H. Jabbar, T. H. Sung, and T. Wei, Sens. Actuators, A: Physical, 254, 134 (2017). [DOI: http://doi.org/10.1016/j.sna.2016.12.006]
  8. L. Jin, S. Gao, X. Zhou, and G. Zhang, Microsyst. Technol., (2017). [DOI: http://doi.org/10.1007/s00542-016-3261-0]
  9. K. B. Kim, C. I. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, J. Eur. Ceram. Soc., 33, 305 (2013). [DOI: http://doi.org/10.1016/j.jeurceramsoc.2012.09.001]
  10. K. B. Kim, D. Song, Y. H. Jeong, J. H. Paik, S. Nahm, H. J. Kim, and T. H. Sung, J. Electroceram., 34, 109 (2015). [DOI: http://doi.org/10.1007/s10832-014-9958-5]
  11. M. Colin, Q. Mortier, S. Basrour, and N. Bencheikh, J. Phys. Conf. Ser., 476, 012135 (2013). [DOI: http://doi.org/10.1088/1742-6596/476/1/012135]
  12. T. B. Xu, E. J. Siochi, J. H. Kang, L. Zuo, W. Zhou, X. Tang, and X. Jiang, Smart Mater. Struct., 22, 065015 (2013). [DOI: http://doi.org/10.1088/0964-1726/22/6/065015]
  13. Q. Q. Zhang, S. J. Gross, S. Tadigadapa, T. N. Jackson, F. T. Djuth, and S. Trolier-McKinstry, Sens. Actuators, A: Physical, 105, 91 (2003). [DOI: http://doi.org/10.1016/S0924-4247(03)00068-2]
  14. M. S. Lee, C. I. Kim, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, Y. H, Jang, B. J. Choi, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 263 (2017). [DOI: http://doi.org/10.4313/JKEM.2017.30.5.263]
  15. W. Becker and W. S. Kreher, Comput. Mater. Sci., 26, 36 (2003). [DOI: http://doi.org/10.1016/S0927-0256(02)00390-7]
  16. B. B. Nielsen, M. S. Nielsen, and I. F. Santos, J. Intell. Mater. Syst. Struct., 28, 78 (2017). [DOI: http://doi.org/10.1177/1045389X16642537]
  17. R. R. Knight, C. Mo, and W. W. Clark, J. Electroceram., 26, 14 (2011). [DOI: http://doi.org/10.1007/s10832-010-9621-8]