DOI QR코드

DOI QR Code

A Production and Analysis on High Quality of Thin Film Transistors Using NH3 Plasma Treatment

NH3 Plasma Treatment를 사용한 고성능 TFT 제작 및 분석

  • Park, Heejun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Nguyen, Van Duy (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 박희준 (성균관대학교 정보통신대학) ;
  • ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2017.04.23
  • Accepted : 2017.05.19
  • Published : 2017.08.01

Abstract

The effect of $NH_3$ plasma treatment on device characteristics was confirmed for an optimized thin film transistor of poly-Si formed by ELA. When C-V curve was checked for MIS (metal-insulator-silicon), Dit of $NH_3$ plasma treated and MIS was $2.7{\times}10^{10}cm^{-2}eV^{-1}$. Also in the TFT device case, it was decreased to the sub-threshold slope of 0.5 V/decade, 1.9 V of threshold voltage and improved in $26cm^2V^{-1}S^{-1}$ of mobility. Si-N and Si-H bonding reduced dangling bonding to each interface. When gate bias stress was applied, the threshold voltage's shift value of $NH_3$ plasma treated device was 0.58 V for 1,000s, 1.14 V for 3,600s, 1.12 V for 7,200s. As we observe from this quality, electrical stability was also improved and $NH_3$ plasma treatment was considered effective for passivation.

Keywords

References

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displasys (John Wiley & Sons, Ltd., USA, 2001) p. 352.
  2. F. S. Wang, M. J. Tsai, and H. C. Cheng, IEEE Electron Device Lett., 16, 503 (1995). [DOI: https://doi.org/10.1109/55.468281]
  3. H. C. You, P. Y. Kuo, F. H. Ko, T. S. Chao, and T. F. Lei, IEEE Electron Device Lett., 27, 799 (2006). [DOI: https://doi.org/10.1109/LED.2006.882519]
  4. J. H. Jung, H. Kim, S. P. Lee, U. C. Sung, J. S. Rhee, C. S. Ko, J. C. Goh, B. R. Choi, J. H. Choi, N. D. Kim, and K. Chung, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 36, 1538 (2005). [DOI: https://doi.org/10.1889/1.2036303]
  5. T. Tsujimura, Y. Kobayashi, K. Murayama, A. Tanaka, M. Morooka, E. Fukumoto, H. Fujimoto, J. Sekine, K. Kanoh, K. Takeda, K. Miwa, M. Asano, N. Ikeda, S. Kohara, S. Ono, C. T. Chung, R. M. Chen, J. W. Chung, C. W. Huang, H. R. Guo, C. C. Yang, C. C. Hsu, H. J. Huang, W. Riess, H. Riel, S. Karg, T. Beierlein, D. Gundlach, S. Alvarado, C. Rost, P. Mueller, F. Libsch, M. Mastro, R. Polastre, A. Lien, J. Sanford, and R. Kaufman, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 34, 6 (2003). [DOI: https://doi.org/10.1889/1.1832193]
  6. Y. Matsueda, Y. S. Park, S. M. Choi, K. J. Yoo, C. Y. Im, Y. W. Yoo, H. H. Yoon, K. N. Kim, H. K. Kim, H. K. Chung, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 36, 1352 (2005). [DOI: https://doi.org/10.1889/1.2036257]
  7. R.M.A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. Y. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, J. C. Sturm, and M. H. Lu, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 29, 11 (1998). [DOI: https://doi.org/10.1889/1.1833705]
  8. T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 32, 384 (2001). [DOI: https://doi.org/10.1889/1.1831876]
  9. K. Ichikawa, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, E. Takahashi, T. Hayashi, and K. Ogata, Jpn. J. Appl. Phys., 46, 25 (2007). [DOI: https://doi.org/10.1143/JJAP.46.L661]
  10. K. Ishimaru and K. Okazaki, Heat Transfer-Asian Research, 33, 106 (2004). [DOI: https://doi.org/10.1002/htj.20000]
  11. S. M. Han, M. Y. Shin, J. H. Park, and M. K. Han, J. Non-Cryst. Solids, 352, 1434 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2005.11.082]