References
- Ahmmad, M.M. and Sumi, Y. (2010), "Strength and Deformability of corroded steel plates under quasi-static tensile load", J. Mar. Sci. Technol., 15(1), 1-15. https://doi.org/10.1007/s00773-009-0066-1
- Appuhamy, J.M.R.S., Kaita, T., Ohga, M. and Fujii, K. (2011), "Prediction of residual strength of corroded tensile steel plates", Int. J. Steel Struct., 11(1), 65-79. https://doi.org/10.1007/S13296-011-1006-6
- Appuhamy, J.M.R.S., Ohga, M., Kaita, T., Chun, P. and Dissanayake, P.B.R. (2013), "Development of an efficient maintenance strategy for corroded steel bridge infrastructures", J. Bridge Eng., 18(6), 464-475. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000381
- Bishop, C.M. (2007), Pattern Recognition and Machine Learning, Springer, Japan.
- Bozic, D.Z. (1996), "Optimisation of dissolution using artificial neural network", Farmacevtski Vestnik., 47, 185-186.
- Chun, P. and Inoue, J. (2009), "Numerical studies of the effect of residual imperfection on the mechanical behavior of heatcorrected steel plates, and analysis of a further repair method", Steel Compos. Struct., Int. J., 9(3), 209-221. https://doi.org/10.12989/scs.2009.9.3.209
- El-Bakyr, M.Y. (2003), "Feed forward neural networks modeling for K-P interactions", Chaos Solution. Fract., 18(3), 995-1000. https://doi.org/10.1016/S0960-0779(03)00068-7
- Hastie, T., Tibshirani, R. and Friedman, J. (2014), The Elements of Statistical Learning, Springer, Japan.
- Hussain, A.S., Yu, X. and Johnson, R.D. (1991), "Application of neural computing in pharmaceutical product development", Pharm. Res., 8(10), 1248-1252. https://doi.org/10.1023/A:1015843527138
- Hussain, A.S., Shivanand, P. and Johnson, R.D. (1994), "Application of neural computing in pharmaceutical product development", Comput. Aid. Formul. Des., Drug Development and Industrial Pharmacy, 20(10), 1739-1752. https://doi.org/10.3109/03639049409038390
- Kaita, T., Tagaya, K., Fujii, K., Miyashita, M. and Uenoya, M. (2005), "A simple estimation method of bending strength for corroded plate girder", Collab. Harmoniz. Creative Syst., 1, 89-97.
- Kaita, T., Appuhamy, J.M.R.S., Ohga, M. and Fujii, K. (2012), "An enhanced method of predicting effective thickness of corroded steel plates", Steel Compos. Struct., Int. J., 12(5), 379-393. https://doi.org/10.12989/scs.2012.12.5.379
- Khedmati, M.R., Nouri, Z.H.M.E. and Roshanali, M.M. (2011), "An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression", Steel Compos. Struct., Int. J., 11(3), 183-205. https://doi.org/10.12989/scs.2011.11.3.183
- Muranaka, A., Minata, O. and Fujii, K. (1998), "Estimation of residual strength and surface irregularity of the corroded steel plates", J. Struct. Eng., 44A, 1063-1071. [In Japanese]
- Murtoniemi, E., Merkku, P. and Yliruusi, J. (1993), "Comparison of four different Neural network training algorithms in modelling the fluidized bed granulation process", Lab. Microcomp., 12(3), 69-76.
- Ohga, M., Appuhammy, J.M.R.S., Kaita, T., Chun, P. and Dissanayake, P.B.R. (2011), "Degradation of tensile strength with the severity of corrosion condition", Proceedings of World Congress on Advances in Structural Engineering and Mechanics (ASEM11+), Seoul, Korea, September, pp. 5280-5297.
- Okumura, M., Fujii, K. and Tukai, M. (2001), "Statistical model ofsteel corrosion considering spatial auto-correlation", J. JSCE,672, 109-116. [In Japanese]
- Rahgozar, R., Sharifi, Y. and Malekinejad, M. (2010), "Bucklingcapacity of uniformly corroded steel members in terms ofexposure time", Steel Compos. Struct., Int. J., 10(6), 475-487. https://doi.org/10.12989/scs.2010.10.6.475
- Richardson, C.J. and Barlow, D.J. (1996), "Neural network computer simulation of aerosols", J. Pharm. Pharmacol., 48(6), 581-591. https://doi.org/10.1111/j.2042-7158.1996.tb05978.x
- Sugimoto, I., Kobayashi, Y. and Ichikawa, A. (2006), "Durability evaluation based on buckling characteristics of corroded steel deck girders", Quarterly Rep. of Railway Technical Research Inst. (QR of RTRI), 47(3), 150-155.
- Zhang, G.P. (2003), "Time series forecasting using a hybrid ARIMA and neural network model", Neurocomputing, 50, 159-175. https://doi.org/10.1016/S0925-2312(01)00702-0
Cited by
- A machine learning approach for predicting the electro-mechanical impedance data of blended RC structures subjected to chloride laden environment vol.31, pp.1, 2022, https://doi.org/10.1088/1361-665x/ac3d6f