DOI QR코드

DOI QR Code

Post-buckling responses of functionally graded beams with porosities

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • 투고 : 2017.02.16
  • 심사 : 2017.05.16
  • 발행 : 2017.08.10

초록

The objective of this work is to analyze post-buckling of functionally graded (FG) beams with porosity effect under compression load. Material properties of the beam change in the thickness direction according to power-law distributions with different porosity models. It is known that post-buckling problems are geometrically nonlinear problems. In the nonlinear kinematic model of the beam, total Lagrangian finite element model of two dimensional (2-D) continuum is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution, porosity parameters, compression loads on the post-buckling behavior of FG beams are investigated and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in post-buckling case.

키워드

참고문헌

  1. Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), "Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions", Compos. Struct., 72(1), 91-104. https://doi.org/10.1016/j.compstruct.2004.10.019
  2. Akbarzadeh Khorshidi, M., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110(1), 160-169. https://doi.org/10.1016/j.ijmecsci.2016.03.006
  3. Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko Beams composed of functionally graded material", Math. Problems Eng., 14 p. DOI: 10.1155/2013/871815
  4. Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065. DOI: 10.1142/S0219455414500655
  5. Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. DOI: 10.1142/S1758825115500477
  6. Akbas, S.D. and Kocaturk, T. (2011), "Post-buckling analysis of a simply supported beam under uniform thermal loading", Sci. Res. Essays, 6(5), 1135-1142.
  7. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech, Int. J., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109
  8. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Thermal Stresses, 36(12), 1235-1254.
  9. Al Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038
  10. Almeida, C.A., Albino, J.C.R., Menezes, I.F.M. and Paulino, G.H. (2011), "Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation", Mech. Res. Commun., 38(8), 553-559. https://doi.org/10.1016/j.mechrescom.2011.07.006
  11. Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Periodica Polytechnica. Eng. Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854
  12. Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., Int. J., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
  13. Babilio, E. (2014), "Dynamics of functionally graded beams on viscoelastic foundation", Int. J. Struct. Stabil. Dyn., 14(8), 1440014. DOI: 10.1142/S0219455414400148
  14. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133(1), 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052
  15. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 20 p. DOI: 10.1155/2016/9561504
  16. Ebrahimi, F. Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  17. Elmaguiri, M., Haterbouch, M., Bouayad, A. and Oussouaddi, O. (2015), "Geometrically nonlinear free vibration of functionally graded beams", J. Mater. Environ. Sci., 6(12), 3620-3633.
  18. Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech.-A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
  19. Hosseini, M. and Fazelzadeh, S.A. (2010), "Aerothermoelastic post-critical and vibration analysis of temperature-dependent functionally graded panels", J. Thermal Stresses, 33(12), 1188-1212. https://doi.org/10.1080/01495739.2010.510754
  20. Hosseini, M. and Fazelzadeh, S.A. (2011), "Thermomechanical stability analysis of functionally graded thin-walled cantilever pipe with flowing fluid subjected to axial load", Int. J. Struct. Stabil. Dyn., 11(3), 513-534. https://doi.org/10.1142/S0219455411004154
  21. Hui-Shen, S. and Wang, Z.-X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020
  22. Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038
  23. Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Non-Linear Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
  24. Kang, Y.A. and Li, X.F. (2010), "Large deflections of a non-linear cantilever functionally graded beam", J. Reinf. Plast. Compos., 29(12), 1761-1774. https://doi.org/10.1177/0731684409103340
  25. Kar, V.R. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Thermal Stresses, 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623
  26. Ke, L.-L., Yang, J. and Kitipornchai, S. (2009), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003
  27. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., Int. M., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
  28. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made offunctionally graded material under thermal loading", Struct. Eng. Mech., Int. M., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
  29. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., Int. J., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
  30. Kocaturk, T., Simsek, M. and Akbas, S.D. (2011), "Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material", Sci. Eng. Compos. Mater., 18(1-2), 21-34. https://doi.org/10.1515/secm.2011.005
  31. Kolakowski, Z. and Teter, A. (2015), "Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression", Compos. Struct., 123(1), 257-262. https://doi.org/10.1016/j.compstruct.2014.12.051
  32. Li, Q. and Li, S. (2011), "Post-bucking configuration of a functionally graded material column under distributed load", Fuhe Cailiao Xuebao(Acta Materiae Compositae Sinica), 28(3), 192-196.
  33. Li, L.Q. and Shao, Q.H. (2014), "Non-linear analysis of a FGM cantilever beam supported on a winkler elastic foundation", Appl. Mech. Mater., 602, 131-134.
  34. Li, S.-R., Zhang, J.-H. and Zhao, Y.-G. (2006), "Thermal postbuckling of functionally graded material Timoshenko Beams", Appl. Math. Mech. (English Ed.), 26(6), 803-810.
  35. Marzocca, P., Fazelzadeh, S.A. and Hosseini, M. (2011), "A review of nonlinear aero-thermo-elasticity of functionally graded panels", J. Thermal Stresses, 34(5-6), 536-568. https://doi.org/10.1080/01495739.2011.564016
  36. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016a), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6
  37. Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016b), "Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749. https://doi.org/10.1016/j.apm.2015.09.093
  38. Mohanty, S.C., Dash, R.R. and Rout, T. (2012), "Static and dynamic stability analysis of a functionally graded Timoshenko Beam", Int. J. Struct. Stabil. Dyn., 12(4), 33 p.
  39. Nguyen, D.K., Gan, B.S. and Trinh, T.H. (2014), "Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material", Struct. Eng. Mech., Int., 49(6) 727-743. https://doi.org/10.12989/sem.2014.49.6.727
  40. Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Design, 2(1), 117-128. https://doi.org/10.1007/s10999-005-4446-3
  41. Reddy, J.N. (2004), An Introduction to Non-linear Finite Element Analysis, Oxford University Press Inc., New York, NY, USA.
  42. Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
  43. Song, X. and Li, S. (2008), "Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads", Adv. Mater. Res., 33-37, 699-706. https://doi.org/10.4028/www.scientific.net/AMR.33-37.699
  44. Sun, Y., Li, S.-R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Thermal Stresses, 39(1) 11-26. https://doi.org/10.1080/01495739.2015.1120627
  45. Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 58(3), 515-532. https://doi.org/10.12989/sem.2016.58.3.515
  46. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  47. Yan, T., Yang, J. and Kitipornchai, S. (2012), "Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation", Nonlinear Dyn., 67(1), 527-540. https://doi.org/10.1007/s11071-011-0003-9
  48. Zhang, D.G. and Zhou, H.-M. (2014), "Nonlinear bending and thermal post-buckling analysis of FGM beams resting on nonlinear elastic foundations", CMES Comput. Model. Eng., 100(3) 201-222.