DOI QR코드

DOI QR Code

A Galerkin Layerwise Formulation for three-dimensional stress analysis in long sandwich plates

  • Ahmadi, Isa (Advanced Materials and computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
  • Received : 2016.12.01
  • Accepted : 2017.05.03
  • Published : 2017.08.10

Abstract

A layerwise (LW) formulation based on the Galerkin method is presented to investigate the three-dimensional stress state in long sandwich plate which is subjected to tension force and pure bending moment. Based on the Galerkin method and the LW discretization approach, the equilibrium equations of elasticity for the long plate are written in the weak form and discretized through the thickness of the plate. The discretized equations are written in terms of displacement components of the numerical layers. The governing equations of the plate are solved analytically for the free edge boundary conditions. The distribution of stress state especially the 3D stress state in the vicinity of the edges of the sandwich plate which is subjected to tension and pure bending is studied. In order to increase the accuracy, the out of plane stresses are obtained by integrating the equilibrium equations of elasticity. The convergence and accuracy of the predictions are studied and various numerical results are presented for distribution of the in-plane and out of plane stresses in symmetric and un-symmetric sandwich plates.

Keywords

References

  1. Ahmadi, I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., Int. J., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733
  2. Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel Compos. Struct., Int. J., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193
  3. Barbero, E.J. (2013), Finite Element Analysis of Composite Materials using Abaqus, CRC Press, Boca Raton, CA, USA.
  4. Basar, Y. and Ding, Y. (1995), "Interlaminar stress analysis of composites: Layerwise shell finite elements includeing transverse strains", Compos. Eng., 5(5), 485-499. https://doi.org/10.1016/0961-9526(95)00020-N
  5. Basar, Y., Itskov, M. and Eckstein, A. (2000), "Composite laminates: Nonlinear interlaminar stress analysis by multi-layer shell elements", Comput. Methods Appl. Mech. Eng., 185(2), 367-397. https://doi.org/10.1016/S0045-7825(99)00267-4
  6. Cetkovic, M. and Vuksanovic, D. (2011), "Large deflection analysis of laminated composite plates using layerwise displacement model", Struct. Eng. Mech., Int. J., 40(2), 257-277. https://doi.org/10.12989/sem.2011.40.2.257
  7. Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", Int. J. Solids Struct., 37(3), 435-459. https://doi.org/10.1016/S0020-7683(99)00014-1
  8. Hamidi, A., Ahmed Houari, M.S., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  9. Hosseini Kordkheili, S.A. and Naghdabadi, R. (2005), "A finite element formulation for analysis of functionally graded plates and shells", Arch. Appl. Mech., 74(5), 375-386. https://doi.org/10.1007/s00419-004-0359-0
  10. Huang, B. and Kim, H.S. (2014), "Free-edge interlaminar stress analysis of piezo-bonded composite laminates under symmetric electric excitation", Int. J. Solids Struct., 51(6), 1246-1252. https://doi.org/10.1016/j.ijsolstr.2013.12.016
  11. Huang, Y., Di, S., Wu, C. and Sun, H. (2002), "Bending analysis of composite laminated plates using a partially hybrid stress element with interlaminar continuity", Comput. Struct., 80(5), 403-410. https://doi.org/10.1016/S0045-7949(02)00011-1
  12. Jin, N.W. (2008), "Damage analysis of laminated composite beams under bending loads using the layer-wise theory", Dissertation Thesis; Texas A&M University, TX, USA.
  13. Kim, T. and Atluri, S.N. (1994), "Interlaminar stresses in composite laminates under out-of-plane shear/bending", AIAA J., 32(8), 1700-1708. https://doi.org/10.2514/3.12162
  14. Kim, H., Lee, J. and Cho, M. (2012), "Free-edge interlaminar stress analysis of composite laminates using interface modeling", J. Eng. Mech., 138(8), 973-983. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000399
  15. Kim, J-S., Han, J.W. and Cho, M. (2016), "Boundary layer state prediction of composite and sandwich plates via an enhanced higher-order shear deformation theory", Compos. Struct., 153, 928-937. https://doi.org/10.1016/j.compstruct.2016.07.006
  16. Lee, C.Y. and Chen, J.M. (1996), "Interlaminar shear stress analysis of composite laminate with layer reduction technique", Int. J. Numer. Methods Eng., 39(5), 847-865. https://doi.org/10.1002/(SICI)1097-0207(19960315)39:5<847::AID-NME885>3.0.CO;2-V
  17. Lekhnitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publisher, Moscow, Russia, 104 p.
  18. Lu, X. and Liu, D. (1990), "An interlaminar shear stress continuity theory" Proceedings of the 5th Technical Conference of the American Society for Composites, Lancaster, PA, USA, June, pp. 479-483.
  19. Matsunaga, H. (2002), "Assessment of a global higher-order deformation theory for laminated composite and sandwich plates", Compos. Struct., 56(3), 279-291. https://doi.org/10.1016/S0263-8223(02)00013-2
  20. Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001
  21. Mittelstedt, C. and Becker, W. (2008), "Reddy's layerwise laminate plate theory for the computation of elastic fields in the vicinity of straight free laminate edges", Mater. Sci. Eng., 498(1), 76-80. https://doi.org/10.1016/j.msea.2007.10.122
  22. Murthy, P.L.N. and Chamis, C.C. (1989), "Free-edge delamination: Laminate width and loading conditions effects", J. Compos. Technol. Res., 11(1), 15-22. https://doi.org/10.1520/CTR10144J
  23. Murugesan, N. and Rajamohan, V. (2015), "Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading", Steel Compos. Struct., Int. J., 18(3), 583-601. https://doi.org/10.12989/scs.2015.18.3.583
  24. Nosier, A. and Bahrami, A. (2007), "Interlaminar stresses in antisymmetric angle-ply laminates", Compos. Struct., 78(1), 18-33 https://doi.org/10.1016/j.compstruct.2005.08.007
  25. Pipes, R.B. and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial extension", J. Compos. Mater., 4(4), 538-548. https://doi.org/10.1177/002199837000400409
  26. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Thermal Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984
  27. Robbins, D.H. and Reddy, J.N. (1993), "Modelling of thick composites using a layerwise laminate theory", Int J Numer Methods Eng., 36(4), 655-677. https://doi.org/10.1002/nme.1620360407
  28. Robbins, D.H. and Reddy, J.N. (1996), "Variable kinematic modelling of laminated composite plates", Int. J. Numer. Methods Eng., 39(13), 2283-2317. https://doi.org/10.1002/(SICI)1097-0207(19960715)39:13<2283::AID-NME956>3.0.CO;2-M
  29. Rohwer, K. (1992), "Application of higher order theories to the bending analysis of layered composite plates", Int. J. Solids Struct., 29(1), 105-119. https://doi.org/10.1016/0020-7683(92)90099-F
  30. Rohwer, K., Rolfes, R. and Sparr, H. (2001), "Higher-order theories for thermal stresses in layered plates", Int. J. Solids Struct., 38(21), 3673-3687. https://doi.org/10.1016/S0020-7683(00)00249-3
  31. Shu, X.P. and Soldators, K.P. (2000), "Cylindrical bending of angle-ply laminates subjected to different sets of edge boundary conditions", Int. J. Solids Struct., 37(31), 4285-4307.
  32. Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477
  33. Tahani, M. and Andakhshideh, A. (2012), "Interlaminar stresses in thick rectangular laminated plates with arbitrary laminations and boundary conditions under transverse loads", Compos. Struct., 94(5), 1793-1804. https://doi.org/10.1016/j.compstruct.2011.12.027
  34. Tahani, M. and Nosier, A. (2003), "Edge effects of uniformly loaded cross-ply composite laminates", Mater. Des., 24(8), 647-658. https://doi.org/10.1016/S0261-3069(03)00098-0
  35. Wang, A.S.D. and Crossman, F.W. (1977), "Edge effects on thermally induced stresses in composite laminates", J. Compos. Mater., 11(3), 300-312. https://doi.org/10.1177/002199837701100305
  36. Wu, C.P. and Kuo, H.C. (1992), "Interlaminar stresses analysis for laminated composite plates based on a local high order lamination theory", Compos. Struct., 20(4), 237-247. https://doi.org/10.1016/0263-8223(92)90029-C
  37. Xiaohui, R., Wanji, C. and Zhen, W. (2011), "A new zig-zag theory and $C^0$ plate bending element for composite and sandwich plates", Arch. Appl. Mech., 81(2), 185-197 https://doi.org/10.1007/s00419-009-0404-0
  38. Yasin, M.Y. and Kapuria, S. (2013), "An efficient layerwise finite element for shallow composite and sandwich shells", Compos. Struct., 98, 202-214. https://doi.org/10.1016/j.compstruct.2012.10.048
  39. Yin, W.L. (1994), "Simple solution of the free-edge stresses in composite laminates under thermal and mechanical loads", J Compos. Mater., 28(6), 573-586. https://doi.org/10.1177/002199839402800605
  40. Zhu, S.Q., Chen, X. and Wang, X. (2007), "Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load", Struct. Eng. Mech., Int. J., 25(6), 753-765. https://doi.org/10.12989/sem.2007.25.6.753

Cited by

  1. Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
  2. Electro-thermo-mechanical stress analysis of smart sandwich cylindrical shell vol.40, pp.5, 2017, https://doi.org/10.12989/scs.2021.40.5.723