References
- Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41, 797 (2012). https://doi.org/10.1039/C1CS15060J.
- Ramadoss A, Kim SJ. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta, 136, 105 (2014). https://doi.org/10.1016/j.electacta. 2014.05.014.
- Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB. Graphene-based materials for flexible supercapacitors. Chem Soc Rev, 44, 3639 (2015). https://doi.org/10.1039/ c4cs00316k.
- Kim Y, Kim S. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites. Electrochim Acta, 163, 252 (2015). https://doi.org/10.1016/j.electacta.2015.02.103.
-
Oh M, Kim S. Synthesis and electrochemical analysis of polyaniline/
$TiO_2$ composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid. Electrochim Acta, 78, 279 (2012). https://doi.org/10.1016/j.electacta.2012.05.109. - Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). https://doi.org/10.1016/s0008-6223(00)00183-4.
- Kim T, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphenebased carbons as supercapacitor electrodes with macro- and mesopores. Acs Nano, 7, 6899 (2013). https://doi.org/10.1021/ nn402077v.
- Huang Y, Liang J, Chen Y. An overview of the applications of graphene- based materials in supercapacitors. Small, 8, 1805 (2012). https://doi.org/10.1002/smll.201102635.
- Chen H, Hu L, Chen M, Yan Y, Wu L. Nickel-Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater, 24, 934 (2014). https://doi. org/10.1002/adfm.201301747.
- Kim Y, Kim S. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property. Bull Korean Chem Soc, 36, 665 (2015).
- Mondal S, Rana U, Malik S. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun, 51, 12365 (2015). https://doi.org/10.1039/ c5cc03981a.
- Zhang H, Wang J, Shan Q, Wang Z, Wang S. Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials. Electrochim Acta, 90, 535 (2013). https://doi.org/10.1016/j.electacta.2012.12.045.
- Kim J, Kim S. Preparation and electrochemical analysis of graphene/ polyaniline composites prepared by aniline polymerization. Res Chem Intermed, 40, 2519 (2014). https://doi.org/10.1007/ s11164-014-1663-0.
-
Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y. Solid-state high performance flexible supercapacitors based on polypyrrole-
$MnO_2$ - carbon fiber hybrid structure. Sci Rep, 3, 2286 (2013). https://doi. org/10.1038/srep02286. - Kim J, Kim S. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta, 119, 11 (2014). https://doi. org/10.1016/j.electacta.2013.11.187.
- Oh M, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). https://doi.org/10.1016/j.synthmet.2012.02.021.
- Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF. Polyaniline/ multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta, 55, 3904 (2010). https://doi.org/10.1016/j.electacta.2010.02.022.
-
Qu Q, Zhu Y, Gao X, Wu Y. Core-shell structure of polypyrrole grown on
$V_2O_5$ nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater, 2, 950 (2012). https://doi. org/10.1002/aenm.201200088. - Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 38, 2520 (2009). https://doi. org/10.1039/B813846J.
- Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Supercapacitor devices based on graphene materials. J Phys Chem C, 113, 13103 (2009). https://doi.org/10.1021/jp902214f.
- Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 196, 1 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084.
- Fan LZ, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors. Electroche Commun, 8, 937 (2006). https://doi.org/10.1016/j.elecom.2006.03.035.
- Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.
- Kim J, Park SJ, Kim S. Capacitance behaviors of polyaniline/ graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). https://doi.org/10.5714/ cl.2012.14.1.051.
- Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta, 88, 519 (2013). https://doi.org/10.1016/j.electacta. 2012.10.082.
- Kim M, Lee C, Seo YD, Cho S, Kim J, Lee G, Kim YK, Jang J. Fabrication of various conducting polymers using graphene oxide as a chemical oxidant. Chem Mater, 27, 6238 (2015). https://doi. org/10.1021/acs.chemmater.5b01408.