DOI QR코드

DOI QR Code

Oleanolic Acid Promotes Neuronal Differentiation and Histone Deacetylase 5 Phosphorylation in Rat Hippocampal Neurons

  • Jo, Hye-Ryeong (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Wang, Sung Eun (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Kim, Yong-Seok (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Lee, Chang Ho (Department of Pharmacology, Hanyang University) ;
  • Son, Hyeon (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2017.03.06
  • Accepted : 2017.05.12
  • Published : 2017.07.31

Abstract

Oleanolic acid (OA) has neurotrophic effects on neurons, although its use as a neurological drug requires further research. In the present study, we investigated the effects of OA and OA derivatives on the neuronal differentiation of rat hippocampal neural progenitor cells. In addition, we investigated whether the class II histone deacetylase (HDAC) 5 mediates the gene expression induced by OA. We found that OA and OA derivatives induced the formation of neurite spines and the expression of synapse-related molecules. OA and OA derivatives stimulated HDAC5 phosphorylation, and concurrently the nuclear export of HDCA5 and the expression of HDAC5 target genes, indicating that OA and OA derivatives induce neural differentiation and synapse formation via a pathway that involves HDAC5 phosphorylation.

Keywords

References

  1. Berridge, M.V., Herst, P.M., and Tan, A.S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127-152.
  2. Broide, R.S., Redwine, J.M., Aftahi, N., Young, W., Bloom, F.E., and Winrow, C.J. (2007). Distribution of histone deacetylases 1-11 in the rat brain. J. Mol. Neurosci. 31, 47-58. https://doi.org/10.1007/BF02686117
  3. Castro, A.J., Frederico, M.J., Cazarolli, L.H., Mendes, C.P., Bretanha, L.C., Schmidt, E.C., Bouzon, Z.L., de Medeiros Pinto, V.A., da Fonte Ramos, C., Pizzolatti, M.G., et al. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Biophys. Acta 1850, 51-61. https://doi.org/10.1016/j.bbagen.2014.10.001
  4. Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L., and Bading, H. (2003). Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151-159. https://doi.org/10.1046/j.1471-4159.2003.01648.x
  5. Cho, S.O., Ban, J.Y., Kim, J.Y., Jeong, H.Y., Lee, I.S., Song, K.S., Bae, K., and Seong, Y.H. (2009). Aralia cordata protects against amyloid beta protein (25-35)-induced neurotoxicity in cultured neurons and has antidementia activities in mice. J. Pharmacol. Sci. 111, 22-32. https://doi.org/10.1254/jphs.08271FP
  6. Cho, Y., Sloutsky, R., Naegle, K.M., and Cavalli, V. (2013). Injuryinduced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894-908. https://doi.org/10.1016/j.cell.2013.10.004
  7. Choi, M., Lee, S.H., Wang, S.E., Ko, S.Y., Song, M., Choi, J.S., Kim, Y.S., Duman, R.S., and Son, H. (2015). Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc. Natl. Acad. Sci. USA 112, 15755-15760.
  8. Coppede, F. (2014). The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet. 5, 220.
  9. DuPont, R.L., Rice, D.P., Miller, L.S., Shiraki, S.S., Rowland, C.R., and Harwood, H.J. (1996). Economic costs of anxiety disorders. Anxiety 2, 167-172. https://doi.org/10.1002/(SICI)1522-7154(1996)2:4<167::AID-ANXI2>3.0.CO;2-L
  10. Finsterwald, C., Carrard, A., and Martin, J.L. (2013). Role of saltinducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PloS one 8, e54545. https://doi.org/10.1371/journal.pone.0054545
  11. Flavell, S.W., Cowan, C.W., Kim, T.K., Greer, P.L., Lin, Y., Paradis, S., Griffith, E.C., Hu, L.S., Chen, C., and Greenberg, M.E. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008-1012. https://doi.org/10.1126/science.1122511
  12. Flavell, S.W., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., and Greenberg, M.E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038. https://doi.org/10.1016/j.neuron.2008.11.029
  13. Gangwal, A. (2013). Neuropharmacological effects of triterpenoids. Phytopharmacology 4, 354-372.
  14. Gao, J., Wang, W.Y., Mao, Y.W., Graff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105-1109. https://doi.org/10.1038/nature09271
  15. Ghosh, A., Carnahan, J., and Greenberg, M.E. (1994). Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618-1623. https://doi.org/10.1126/science.7907431
  16. Ha, C.H., Wang, W., Jhun, B.S., Wong, C., Hausser, A., Pfizenmaier, K., McKinsey, T.A., Olson, E.N., and Jin, Z.G. (2008). Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J. Biol. Chem. 283, 14590-14599. https://doi.org/10.1074/jbc.M800264200
  17. Harada, A., Teng, J., Takei, Y., Oguchi, K., and Hirokawa, N. (2002). MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol. 158, 541-549. https://doi.org/10.1083/jcb.200110134
  18. Huang, H.Y., Liu, D.D., Chang, H.F., Chen, W.F., Hsu, H.R., Kuo, J.S., and Wang, M.J. (2012). Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells 30, 2760-2773. https://doi.org/10.1002/stem.1226
  19. Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E., and Harrison, P.J. (2004). Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am. J. Psychiatry 161, 1848-1855. https://doi.org/10.1176/ajp.161.10.1848
  20. Li, Y., Ishibashi, M., Satake, M., Chen, X., Oshima, Y., and Ohizumi, Y. (2003). Sterol and triterpenoid constituents of Verbena littoralis with NGF-potentiating activity. J. Nat. Prod. 66, 696-698. https://doi.org/10.1021/np020577p
  21. Lu, J., McKinsey, T.A., Nicol, R.L., and Olson, E.N. (2000). Signaldependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97, 4070-4075. https://doi.org/10.1073/pnas.080064097
  22. Meier, K., and Brehm, A. (2014). Chromatin regulation: how complex does it get? Epigenetics 9, 1485-1495. https://doi.org/10.4161/15592294.2014.971580
  23. Ning, Y., Huang, J., Kalionis, B., Bian, Q., Dong, J., Wu, J., Tai, X., Xia, S., and Shen, Z. (2015). Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5. Stem Cells Int. 2015, 672312.
  24. Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C., and Kandel, E.R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137-1145. https://doi.org/10.1016/S0896-6273(00)80140-3
  25. Pollier, J., and Goossens, A. (2012). Oleanolic acid. Phytochemistry 77, 10-15. https://doi.org/10.1016/j.phytochem.2011.12.022
  26. Salma, J., and McDermott, J.C. (2012). Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J. Neurosci. 32, 2790-2803. https://doi.org/10.1523/JNEUROSCI.3609-11.2012
  27. Schneider, J.W., Gao, Z., Li, S., Farooqi, M., Tang, T.S., Bezprozvanny, I., Frantz, D.E., and Hsieh, J. (2008). Small-molecule activation of neuronal cell fate. Nat. Chem. Biol. 4, 408-410. https://doi.org/10.1038/nchembio.95
  28. Soltani, M.H., Pichardo, R., Song, Z., Sangha, N., Camacho, F., Satyamoorthy, K., Sangueza, O.P., and Setaluri, V. (2005). Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am. J. Pathol. 166, 1841-1850. https://doi.org/10.1016/S0002-9440(10)62493-5
  29. Son, H., Banasr, M., Choi, M., Chae, S.Y., Licznerski, P., Lee, B., Voleti, B., Li, N., Lepack, A., Fournier, N.M., et al. (2012). Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc. Natl. Acad. Sci. USA 109, 11378-11383. https://doi.org/10.1073/pnas.1201191109
  30. Suh, N., Wang, Y., Honda, T., Gribble, G.W., Dmitrovsky, E., Hickey, W.F., Maue, R.A., Place, A.E., Porter, D.M., Spinella, M.J., et al. (1999). A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59, 336-341.
  31. Turrigiano, G.G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422-435. https://doi.org/10.1016/j.cell.2008.10.008
  32. Volmar, C.-H., and Wahlestedt, C. (2015). Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1, 20-27. https://doi.org/10.1016/j.nepig.2014.10.002
  33. Yi, L.T., Li, J., Liu, B.B., Luo, L., Liu, Q., and Geng, D. (2014). BDNFERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. J. Psychiatry Neurosci. 39, 348-359. https://doi.org/10.1503/jpn.130169
  34. Yin, M.C. (2015). Inhibitory effects and actions of pentacyclic triterpenes upon glycation. BioMedicine 5, 13. https://doi.org/10.7603/s40681-015-0013-x
  35. Yu, Z., Zhang, W., and Kone, B.C. (2002). Histone deacetylases augment cytokine induction of the iNOS gene. J. Am. Soc. Nephrol. 13, 2009-2017. https://doi.org/10.1097/01.ASN.0000024253.59665.F1

Cited by

  1. Differential localizations of protein phosphatase 1 isoforms determine their physiological function in the heart vol.51, pp.3, 2019, https://doi.org/10.1093/abbs/gmy171
  2. Effect of the Histone Deacetylases Inhibitors on the Differentiation of Stem Cells in Bone Damage Repairing and Regeneration vol.15, pp.1, 2017, https://doi.org/10.2174/1574888x14666190905155516
  3. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases vol.8, pp.10, 2020, https://doi.org/10.12998/wjcc.v8.i10.1767