References
- Akutsu, M., Dikic, I., and Bremm, A. (2016). Ubiquitin chain diversity at a glance. J. Cell Sci. 129, 875-880. https://doi.org/10.1242/jcs.183954
- B'Chir, W., Maurin, A.C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699. https://doi.org/10.1093/nar/gkt563
- Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
- Bao, X., Ren, T., Huang, Y., Ren, C., Yang, K., Zhang, H., and Guo, W. (2017). Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma. Int. J. Oncol. 50, 477-486. https://doi.org/10.3892/ijo.2016.3806
- Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross, C.A., Scahill, R.I., Wetzel, R., et al. (2015). Huntington disease. Nat. Rev. Dis. Primers 1, 15005.
- Bayraktar, O., Oral, O., Kocaturk, N.M., Akkoc, Y., Eberhart, K., Kosar, A., and Gozuacik, D. (2016). IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation. PLoS One 11, e0164864. https://doi.org/10.1371/journal.pone.0164864
- Blessing, N.A., Brockman, A.L., and Chadee, D.N. (2014). The E3 ligase CHIP mediates ubiquitination and degradation of mixed-lineage kinase 3. Mol. Cell. Biol. 34, 3132-3143. https://doi.org/10.1128/MCB.00296-14
- Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L.H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., et al. (2016). Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl. Acad. Sci. USA 113, E4639-4647. https://doi.org/10.1073/pnas.1608644113
- Brown, N.G., VanderLinden, R., Watson, E.R., Weissmann, F., Ordureau, A., Wu, K.P., Zhang, W., Yu, S., Mercredi, P.Y., Harrison, J.S., et al. (2016). Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165, 1440-1453. https://doi.org/10.1016/j.cell.2016.05.037
- Budenholzer, L., Cheng, C.L., Li, Y., and Hochstrasser, M. (2017). Proteasome structure and Assembly. J. Mol. Biol. pii: S0022-2836(17)30270-X.
- Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Aminoterminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
- Cha-Molstad, H., Yu, J.E., Lee, S.H., Kim, J.G., Sung, K.S., Hwang, J., Yoo, Y.D., Lee, Y.J., Kim, S.T., Lee, D.H., et al. (2016). Modulation of SQSTM1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone HSPA5/GRP78/BiP. Autophagy 12, 426-428. https://doi.org/10.1080/15548627.2015.1126047
- Cha-Molstad, H., Yu, J.E., Lee, S.H., Feng, Z., Lee, S.H., Kim, J.G., Yang, P., Han, B., Sung, K.W., Yoo, Y.D., et al. (in press). p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway, which modulates autophagosome biogenesis. Nat. Commun.
- Ciechanover, A. (2015). The unravelling of the ubiquitin system. Na. Rev. Mol. Cell Biol. 16, 322-324. https://doi.org/10.1038/nrm3982
- Ciechanover, A., and Kwon, Y.T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47, e147. https://doi.org/10.1038/emm.2014.117
- Ciechanover, A., and Kwon, Y.T. (2017). Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front. Neurosci. 11, 185.
- Cohen-Kaplan, V., Ciechanover, A., and Livneh, I. (2017). Stressinduced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy 13, 759-760. https://doi.org/10.1080/15548627.2016.1278327
- Collins, G.A., and Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell 169, 792-806. https://doi.org/10.1016/j.cell.2017.04.023
- Cristofani, R., Crippa, V., Rusmini, P., Cicardi, M.E., Meroni, M., Licata, N.V., Sala, G., Giorgetti, E., Grunseich, C., Galbiati, M., et al. (2017). Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy doi: 10.1080/15548627.2017.1308985. [Epub ahead of print].
- Crosas, B., Hanna, J., Kirkpatrick, D.S., Zhang, D.P., Tone, Y., Hathaway, N.A., Buecker, C., Leggett, D.S., Schmidt, M., King, R.W., et al. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413. https://doi.org/10.1016/j.cell.2006.09.051
- Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., and Corn, J.E. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169. https://doi.org/10.1038/ncb3097
- Deegan, S., Saveljeva, S., Gorman, A.M., and Samali, A. (2013). Stressinduced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci. 70, 2425-2441. https://doi.org/10.1007/s00018-012-1173-4
- Deng, Z., Purtell, K., Lachance, V., Wold, M.S., Chen, S., and Yue, Z. (2017). Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27, 491-504. https://doi.org/10.1016/j.tcb.2017.01.001
- Dwane, L., Gallagher, W.M., Ni Chonghaile, T., and O'Connor, D.P. (2017). The emerging role of non-traditional ubiquitination in oncogenic pathways. J. Biol. Chem. 292, 3543-3551. https://doi.org/10.1074/jbc.R116.755694
- Feng, L., Zhang, J., Zhu, N., Ding, Q., Zhang, X., Yu, J., Qiang, W., Zhang, Z., Ma, Y., Huang, D., et al. (2017). Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/alpha-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy 13, 686-702. https://doi.org/10.1080/15548627.2017.1280207
- Ferreira, J.V., Soares, A.R., Ramalho, J.S., Pereira, P., and Girao, H. (2015). K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci. Rep. 5, 10210. https://doi.org/10.1038/srep10210
- French, M.E., Klosowiak, J.L., Aslanian, A., Reed, S.I., Yates, J.R., 3rd and Hunter, T. (2017). Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J. Biol. Chem. 292, 10398-10413. https://doi.org/10.1074/jbc.M117.789479
- Gade, P., Ramachandran, G., Maachani, U.B., Rizzo, M.A., Okada, T., Prywes, R., Cross, A.S., Mori, K., and Kalvakolanu, D.V. (2012). An IFNgamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. USA 109, 10316-10321. https://doi.org/10.1073/pnas.1119273109
- Greene, C.M., Marciniak, S.J., Teckman, J., Ferrarotti, I., Brantly, M.L., Lomas, D.A., Stoller, J.K., and McElvaney, N.G. (2016). alpha1-Antitrypsin deficiency. Nat. Rev. Dis. Primers 2, 16051. https://doi.org/10.1038/nrdp.2016.51
- Grice, G.L., and Nathan, J.A. (2016). The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73, 3497-3506. https://doi.org/10.1007/s00018-016-2255-5
- Gu, D., Wang, S., Kuiatse, I., Wang, H., He, J., Dai, Y., Jones, R.J., Bjorklund, C.C., Yang, J., Grant, S., et al. (2014). Inhibition of the MDM2 E3 Ligase induces apoptosis and autophagy in wild-type and mutant p53 models of multiple myeloma, and acts synergistically with ABT-737. PLoS One 9, e103015. https://doi.org/10.1371/journal.pone.0103015
- Harada, M., Hanada, S., Toivola, D.M., Ghori, N., and Omary, M.B. (2008). Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47, 2026-2035. https://doi.org/10.1002/hep.22294
- Hetz, C., Chevet, E., and Oakes, S.A. (2015). Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829-838. https://doi.org/10.1038/ncb3184
- Hidvegi, T., Ewing, M., Hale, P., Dippold, C., Beckett, C., Kemp, C., Maurice, N., Mukherjee, A., Goldbach, C., Watkins, S., et al. (2010). An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229-232. https://doi.org/10.1126/science.1190354
- Hipp, M.S., Patel, C.N., Bersuker, K., Riley, B.E., Kaiser, S.E., Shaler, T.A., Brandeis, M., and Kopito, R.R. (2012). Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 196, 573-587. https://doi.org/10.1083/jcb.201110093
- Hyttinen, J.M., Amadio, M., Viiri, J., Pascale, A., Salminen, A., and Kaarniranta, K. (2014). Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18, 16-28. https://doi.org/10.1016/j.arr.2014.07.002
- Jing, K., Song, K.S., Shin, S., Kim, N., Jeong, S., Oh, H.R., Park, J.H., Seo, K.S., Heo, J.Y., Han, J., et al. (2011). Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7, 1348-1358. https://doi.org/10.4161/auto.7.11.16658
- Kim, H.C., and Huibregtse, J.M. (2009). Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307-3318. https://doi.org/10.1128/MCB.00240-09
- Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, R., Rush, J., Comb, M.J., et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340. https://doi.org/10.1016/j.molcel.2011.08.025
- Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516. https://doi.org/10.1016/j.molcel.2009.01.020
- Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009). Autophagy inhibition compromises degradation of ubiquitinproteasome pathway substrates. Mol. Cell 33, 517-527. https://doi.org/10.1016/j.molcel.2009.01.021
- Kwon, Y.T., Reiss, Y., Fried, V.A., Hershko, A., Yoon, J.K., Gonda, D.K., Sangan, P., Copeland, N.G., Jenkins, N.A., and Varshavsky, A. (1998). The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95, 7898-7903. https://doi.org/10.1073/pnas.95.14.7898
- Kwon, Y.T., Kashina, A.S., and Varshavsky, A. (1999). Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the Nend rule pathway. Mol. Cell. Biol. 19, 182-193. https://doi.org/10.1128/MCB.19.1.182
- Kwon, Y.T., Kashina, A.S., Davydov, I.V., Hu, R.G., An, J.Y., Seo, J.W., Du, F., and Varshavsky, A. (2002). An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96-99. https://doi.org/10.1126/science.1069531
- Lagunas-Martinez, A., Garcia-Villa, E., Arellano-Gaytan, M., Contreras-Ochoa, C.O., Dimas-Gonzalez, J., Lopez-Arellano, M.E., Madrid-Marina, V., and Gariglio, P. (2017). MG132 plus apoptosis antigen-1 (APO-1). antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes. Apoptosis 22, 27-40. https://doi.org/10.1007/s10495-016-1299-1
- Liu, W., Shang, Y., and Li, W. (2014). gp78 elongates of polyubiquitin chains from the distal end through the cooperation of its G2BR and CUE domains. Sci. Rep. 4, 7138.
- Liu, C., Liu, W., Ye, Y., and Li, W. (2017). Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat. Commun. 8, 14274. https://doi.org/10.1038/ncomms14274
- Locke, M., Toth, J.I., and Petroski, M.D. (2014). Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulumassociated degradation. Biochem. J. 459, 205-216. https://doi.org/10.1042/BJ20120662
- Lu, D., Girard, J.R., Li, W., Mizrak, A., and Morgan, D.O. (2015a). Quantitative framework for ordered degradation of APC/C substrates. BMC Biol. 13, 96. https://doi.org/10.1186/s12915-015-0205-6
- Lu, Y., Lee, B.H., King, R.W., Finley, D., and Kirschner, M.W. (2015b). Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 348, 1250834. https://doi.org/10.1126/science.1250834
- Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015). Autophagic Degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis. Mol. Cell 58, 1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023
- Marshall, R.S., McLoughlin, F., and Vierstra, R.D. (2016). Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep. 16, 1717-1732. https://doi.org/10.1016/j.celrep.2016.07.015
- Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M., and Nukina, N. (2011). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279-289. https://doi.org/10.1016/j.molcel.2011.07.039
- McKeon, J.E., Sha, D., Li, L., and Chin, L.S. (2015). Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell. Mol. Life Sci. 72, 1811-1824. https://doi.org/10.1007/s00018-014-1781-2
- Minoia, M., Boncoraglio, A., Vinet, J., Morelli, F.F., Brunsting, J.F., Poletti, A., Krom, S., Reits, E., Kampinga, H.H., and Carra, S. (2014). BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10, 1603-1621. https://doi.org/10.4161/auto.29409
- Morris, J.R., and Garvin, A.J. (2017). SUMO in the DNA doublestranded break response: similarities, differences, and cooperation with ubiquitin. J. Mol. Biol. pii: S0022-2836(17)30227-9.
- Mrschtik, M., O'Prey, J., Lao, L.Y., Long, J.S., Beaumatin, F., Strachan, D., O'Prey, M., Skommer, J., and Ryan, K.M. (2015). DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose. Cell Death Differ. 22, 1714-1726. https://doi.org/10.1038/cdd.2015.26
- Munch, D., Rodriguez, E., Bressendorff, S., Park, O.K., Hofius, D., and Petersen, M. (2014). Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy 10, 1579-1587. https://doi.org/10.4161/auto.29406
- Ohtake, F., and Tsuchiya, H. (2017). The emerging complexity of ubiquitin architecture. J. Biochem. 161, 125-133.
- Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., and Le, W. (2008). Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 32, 16-25. https://doi.org/10.1016/j.nbd.2008.06.003
- Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
- Park, H.S., Jun do, Y., Han, C.R., Woo, H.J., and Kim, Y.H. (2011). Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase p56lck in human Jurkat T cells. Biochem. Pharmacol.82, 1110-1125. https://doi.org/10.1016/j.bcp.2011.07.085
- Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
- Qin, Y., Zhou, M.T., Hu, M.M., Hu, Y.H., Zhang, J., Guo, L., Zhong, B., and Shu, H.B. (2014). RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathogens 10, e1004358. https://doi.org/10.1371/journal.ppat.1004358
- Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73-84. https://doi.org/10.1016/j.cell.2004.11.013
- Riley, B.E., Kaiser, S.E., Shaler, T.A., Ng, A.C., Hara, T., Hipp, M.S., Lage, K., Xavier, R.J., Ryu, K.Y., Taguchi, K., et al. (2010). Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191, 537-552. https://doi.org/10.1083/jcb.201005012
- Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., and Tanaka, K. (2009). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359-371. https://doi.org/10.1038/emboj.2008.305
- Scott, D., Oldham, N.J., Strachan, J., Searle, M.S., and Layfield, R. (2015). Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 15, 844-861. https://doi.org/10.1002/pmic.201400341
- Seeler, J.S., and Dejean, A. (2017). SUMO and the robustness of cancer. Nat. Rev. Cancer 17, 184-197. https://doi.org/10.1038/nrc.2016.143
- Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
- Stolz, A., Ernst, A., and Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501. https://doi.org/10.1038/ncb2979
- Suber, T., Wei, J., Jacko, A.M., Nikolli, I., Zhao, Y., Zhao, J., and Mallampalli, R.K. (2017). SCFFBXO17 E3 ligase modulates inflammation by regulating proteasomal degradation of glycogen synthase kinase-3beta in lung epithelia. J. Biol. Chem. 292, 7452-7461. https://doi.org/10.1074/jbc.M116.771667
- Swatek, K.N., and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399-422. https://doi.org/10.1038/cr.2016.39
- Tasaki, T., Mulder, L.C., Iwamatsu, A., Lee, M.J., Davydov, I.V., Varshavsky, A., Muesing, M., and Kwon, Y.T. (2005). A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Molecular and cellular biology 25, 7120-7136. https://doi.org/10.1128/MCB.25.16.7120-7136.2005
- Tasaki, T., Sriram, S.M., Park, K.S., and Kwon, Y.T. (2012). The N-end rule pathway. Ann. Rev. Biochem. 81, 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
- Tasaki, T., Kim, S.T., Zakrzewska, A., Lee, B.E., Kang, M.J., Yoo, Y.D., Cha-Molstad, H.J., Hwang, J., Soung, N.K., Sung, K.S., et al. (2013). UBR box N-recognin-4 (UBR4)., an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc. Natl. Acad. Sci. USA 110, 3800-3805. https://doi.org/10.1073/pnas.1217358110
- Taylor, J.P., Brown, R.H., Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to mechanism. Nature 539, 197-206. https://doi.org/10.1038/nature20413
- Tomar, D., Prajapati, P., Sripada, L., Singh, K., Singh, R., Singh, A.K., and Singh, R. (2013). TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death. Biochim. Biophys. Acta 1833, 3134-3144. https://doi.org/10.1016/j.bbamcr.2013.08.021
- van Wijk, S.J., Fiskin, E., Putyrski, M., Pampaloni, F., Hou, J., Wild, P., Kensche, T., Grecco, H.E., Bastiaens, P., and Dikic, I. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47, 797-809. https://doi.org/10.1016/j.molcel.2012.06.017
- Wang, J., Kang, R., Huang, H., Xi, X., Wang, B., Wang, J., and Zhao, Z. (2014). Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 10, 766-784. https://doi.org/10.4161/auto.27954
- White, E. (2016). Autophagy and p53. Cold Spring Harb. Perspect Med. 6, a026120. https://doi.org/10.1101/cshperspect.a026120
- Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233. https://doi.org/10.1126/science.1205405
- Wurzer, B., Zaffagnini, G., Fracchiolla, D., Turco, E., Abert, C., Romanov, J., and Martens, S. (2015). Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife 4, e08941.
- Yamano, K., Matsuda, N., and Tanaka, K. (2016). The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316. https://doi.org/10.15252/embr.201541486
- Yau, R., and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579-586. https://doi.org/10.1038/ncb3358
- Zaffagnini, G., and Martens, S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714-1724. https://doi.org/10.1016/j.jmb.2016.02.004
- Zalckvar, E., Berissi, H., Eisenstein, M., and Kimchi, A. (2009). Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722. https://doi.org/10.4161/auto.5.5.8625
- Zhang, X.D., Qi, L., Wu, J.C., and Qin, Z.H. (2013). DRAM1 regulates autophagy flux through lysosomes. PLoS one 8, e63245. https://doi.org/10.1371/journal.pone.0063245
- Zhang, H.T., Zeng, L.F., He, Q.Y., Tao, W.A., Zha, Z.G., and Hu, C.D. (2016). The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim. Biophys. Acta 1863, 335-346. https://doi.org/10.1016/j.bbamcr.2015.12.001
- Zhang, Z., Wang, H., Ding, Q., Xing, Y., Xu, D., Xu, Z., Zhou, T., Qian, B., Ji, C., Pan, X., et al. (2017). The tumor suppressor p53 regulates autophagosomal and lysosomal biogenesis in lung cancer cells by targeting transcription factor EB. Biomed. Pharmacother. 89, 1055-1060. https://doi.org/10.1016/j.biopha.2017.02.103
Cited by
- Mild Exercise Differently Affects Proteostasis and Oxidative Stress on Motor Areas During Neurodegeneration: A Comparative Study of Three Treadmill Running Protocols pp.1476-3524, 2018, https://doi.org/10.1007/s12640-018-9966-3
- Cyclin D1-CDK4 activity drives sensitivity to bortezomib in mantle cell lymphoma by blocking autophagy-mediated proteolysis of NOXA vol.11, pp.1, 2018, https://doi.org/10.1186/s13045-018-0657-6
- The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome vol.131, pp.17, 2018, https://doi.org/10.1242/jcs.217646
- Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration vol.55, pp.8, 2018, https://doi.org/10.1007/s12035-017-0856-0
- Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01024
- Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00339
- N-degron and C-degron pathways of protein degradation vol.116, pp.2, 2019, https://doi.org/10.1073/pnas.1816596116
- Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-11202-3
- Targeting Chaperone-Mediated Autophagy for Disease Therapy vol.4, pp.3, 2018, https://doi.org/10.1007/s40495-018-0138-1
- Bortezomib enhances radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6 oncoprotein degradation vol.37, pp.1, 2017, https://doi.org/10.1186/s13046-018-0760-0
- A Structural View of Xenophagy, a Battle between Host and Microbes vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.2274
- When nature’s robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies vol.15, pp.4, 2018, https://doi.org/10.1080/14789450.2018.1453362
- The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins vol.7, pp.8, 2018, https://doi.org/10.3390/cells7080091
- Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-33630-5
- Afobazole Restores the Dopamine Level in a 6-Hydroxydopamine Model of Parkinson’s Disease vol.13, pp.1, 2017, https://doi.org/10.1134/s1819712419010185
- The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010040
- Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4741252
- Autophagic Degradation of Misfolded Nuclear Receptor Co-repressor (NCoR) Is Linked to the Growth of Tumor Cells in HBX Positive Hepatocellular Carcinoma (HCC) vol.9, pp.None, 2017, https://doi.org/10.3389/fonc.2019.01335
- Exportin‐T promotes tumor proliferation and invasion in hepatocellular carcinoma vol.58, pp.2, 2017, https://doi.org/10.1002/mc.22928
- ARL4C stabilized by AKT/mTOR pathway promotes the invasion of PTEN‐deficient primary human glioblastoma vol.247, pp.2, 2017, https://doi.org/10.1002/path.5189
- Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo vol.8, pp.3, 2019, https://doi.org/10.3390/cells8030211
- The Role of Primary Cilia in the Crosstalk between the Ubiquitin–Proteasome System and Autophagy vol.8, pp.3, 2017, https://doi.org/10.3390/cells8030241
- Changes in expression of the autophagy-related genes microtubule-associated protein 1 light chain 3β and autophagy related 7 in skeletal muscle of fattening Japanese Black cattle: a pilot study vol.32, pp.4, 2019, https://doi.org/10.5713/ajas.18.0370
- Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity vol.20, pp.9, 2017, https://doi.org/10.3390/ijms20092197
- Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function vol.316, pp.5, 2017, https://doi.org/10.1152/ajpcell.00500.2018
- Modulation of Amyloid States by Molecular Chaperones vol.11, pp.7, 2019, https://doi.org/10.1101/cshperspect.a033969
- Ubiquitin Extension Protein UEP1 Modulates Cell Death and Resistance to Various Pathogens in Tobacco vol.109, pp.7, 2019, https://doi.org/10.1094/phyto-06-18-0212-r
- Proteasome Activation as a New Therapeutic Approach To Target Proteotoxic Disorders vol.62, pp.14, 2017, https://doi.org/10.1021/acs.jmedchem.9b00101
- Proteasome Activation to Combat Proteotoxicity vol.24, pp.15, 2017, https://doi.org/10.3390/molecules24152841
- Gid10 as an alternative N-recognin of the Pro/N-degron pathway vol.116, pp.32, 2017, https://doi.org/10.1073/pnas.1908304116
- Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity vol.11, pp.16, 2017, https://doi.org/10.18632/aging.102177
- C9orf72 Proteins Regulate Autophagy and Undergo Autophagosomal or Proteasomal Degradation in a Cell Type-Dependent Manner vol.8, pp.10, 2019, https://doi.org/10.3390/cells8101233
- Autophagie et spermatozoïde vol.35, pp.11, 2017, https://doi.org/10.1051/medsci/2019172
- Juvenile Huntington’s Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mu vol.20, pp.21, 2019, https://doi.org/10.3390/ijms20215338
- Ochratoxin A Sequentially Activates Autophagy and the Ubiquitin-Proteasome System vol.11, pp.11, 2017, https://doi.org/10.3390/toxins11110615
- Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors vol.84, pp.11, 2017, https://doi.org/10.1134/s0006297919110117
- LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer vol.18, pp.1, 2019, https://doi.org/10.1186/s12943-019-1105-0
- Inhibition of Embryonic HSP 90 Function Promotes Variation of Cold Tolerance in Zebrafish vol.11, pp.None, 2017, https://doi.org/10.3389/fgene.2020.541944
- The Role of Ubiquitin E3 Ligase in Atherosclerosis vol.27, pp.None, 2017, https://doi.org/10.2174/0929867327666200306124418
- Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice vol.9, pp.None, 2017, https://doi.org/10.7554/elife.56590
- Cardioprotective Role of Melatonin in Acute Myocardial Infarction vol.11, pp.None, 2020, https://doi.org/10.3389/fphys.2020.00366
- KLICK Syndrome Linked to a POMP Mutation Has Features Suggestive of an Autoinflammatory Keratinization Disease vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.00641
- FAIM Is a Non-redundant Defender of Cellular Viability in the Face of Heat and Oxidative Stress and Interferes With Accumulation of Stress-Induced Protein Aggregates vol.7, pp.None, 2017, https://doi.org/10.3389/fmolb.2020.00032
- Multiple Functions of ATG8 Family Proteins in Plant Autophagy vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00466
- Comment on “Everolimus induces G1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells” vol.318, pp.2, 2017, https://doi.org/10.1152/ajpcell.00421.2019
- Evolution of Substrates and Components of the Pro/N-Degron Pathway vol.59, pp.4, 2017, https://doi.org/10.1021/acs.biochem.9b00953
- The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells vol.39, pp.4, 2017, https://doi.org/10.1177/0960327119896614
- Investigating AKT activation and autophagy in immunoproteasome-deficient retinal cells vol.15, pp.4, 2017, https://doi.org/10.1371/journal.pone.0231212
- Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy vol.104, pp.9, 2017, https://doi.org/10.1007/s00253-020-10518-x
- Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum vol.9, pp.5, 2017, https://doi.org/10.3390/cells9051179
- Transcriptome sequencing analysis of mono-ADP-ribosylation in colorectal cancer cells vol.43, pp.5, 2020, https://doi.org/10.3892/or.2020.7516
- High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11) vol.295, pp.20, 2017, https://doi.org/10.1074/jbc.ra119.012213
- Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy vol.25, pp.10, 2017, https://doi.org/10.3390/molecules25102352
- Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling vol.117, pp.20, 2017, https://doi.org/10.1073/pnas.2003043117
- Recognition of nonproline N-terminal residues by the Pro/N-degron pathway vol.117, pp.25, 2017, https://doi.org/10.1073/pnas.2007085117
- How autophagy can restore proteostasis defects in multiple diseases? vol.40, pp.4, 2020, https://doi.org/10.1002/med.21662
- CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum vol.123, pp.3, 2020, https://doi.org/10.1038/s41416-020-0885-8
- The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway vol.59, pp.30, 2017, https://doi.org/10.1021/acs.biochem.0c00514
- Nifedipine-induced AMPK activation alleviates senescence by increasing autophagy and suppressing of Ca2+ levels in vascular smooth muscle cells vol.190, pp.None, 2017, https://doi.org/10.1016/j.mad.2020.111314
- RNF115 deletion inhibits autophagosome maturation and growth of gastric cancer vol.11, pp.9, 2017, https://doi.org/10.1038/s41419-020-03011-w
- The Roles of Ubiquitin in Mediating Autophagy vol.9, pp.9, 2020, https://doi.org/10.3390/cells9092025
- RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells vol.11, pp.10, 2017, https://doi.org/10.1038/s41419-020-03096-3
- IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER vol.319, pp.4, 2017, https://doi.org/10.1152/ajpendo.00071.2020
- Autophagic receptor p62 protects against glycation‐derived toxicity and enhances viability vol.19, pp.11, 2017, https://doi.org/10.1111/acel.13257
- Gastric cancer: a comprehensive review of current and future treatment strategies vol.39, pp.4, 2020, https://doi.org/10.1007/s10555-020-09925-3
- Exercise Training Attenuates Ubiquitin-Proteasome Pathway and Increases the Genes Related to Autophagy on the Skeletal Muscle of Patients With Inflammatory Myopathies vol.27, pp.6, 2021, https://doi.org/10.1097/rhu.0000000000001721
- Sorting Nexins in Protein Homeostasis vol.10, pp.1, 2017, https://doi.org/10.3390/cells10010017
- A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.762751
- SC75741, A Novel c-Abl Inhibitor, Promotes the Clearance of TDP25 Aggregates via ATG5-Dependent Autophagy Pathway vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.741219
- Tumor Susceptibility Gene 101 facilitates rapamycin-induced autophagic flux in neuron cells vol.134, pp.None, 2017, https://doi.org/10.1016/j.biopha.2020.111106
- The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries vol.22, pp.4, 2017, https://doi.org/10.3390/ijms22041875
- Role of the Ubiquitin System in Chronic Pain vol.14, pp.None, 2017, https://doi.org/10.3389/fnmol.2021.674914
- Co-Chaperone Bag-1 Plays a Role in the Autophagy-Dependent Cell Survival through Beclin 1 Interaction vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26040854
- Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis vol.22, pp.3, 2017, https://doi.org/10.15252/embr.202051063
- Toward Understanding the Biochemical Determinants of Protein Degradation Rates vol.6, pp.8, 2017, https://doi.org/10.1021/acsomega.0c05318
- The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy vol.13, pp.2, 2017, https://doi.org/10.1007/s12551-021-00789-7
- Switching the Proteolytic System from the Ubiquitin–Proteasome System to Autophagy in the Spinal Cord of an Amyotrophic Lateral Sclerosis Mouse Model vol.466, pp.None, 2021, https://doi.org/10.1016/j.neuroscience.2021.04.034
- Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors vol.71, pp.None, 2017, https://doi.org/10.1016/j.tice.2021.101513
- The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy vol.10, pp.8, 2021, https://doi.org/10.3390/cells10081852
- New Avenues for the Treatment of Huntington’s Disease vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168363
- Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169042
- α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092229
- Interactions between long non‑coding RNAs and RNA‑binding proteins in cancer (Review) vol.46, pp.6, 2017, https://doi.org/10.3892/or.2021.8207
- Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway vol.118, pp.43, 2021, https://doi.org/10.1073/pnas.2115430118
- The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis vol.33, pp.11, 2017, https://doi.org/10.1093/plcell/koab210
- UBB+1 reduces amyloid-β cytotoxicity by activation of autophagy in yeast vol.13, pp.21, 2021, https://doi.org/10.18632/aging.203681
- Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine vol.12, pp.4, 2017, https://doi.org/10.1007/s13167-021-00256-z
- VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-21715-1
- Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells vol.10, pp.12, 2021, https://doi.org/10.3390/cells10123394
- (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells vol.22, pp.23, 2017, https://doi.org/10.3390/ijms222313170
- Interdependent Regulation of Polycystin Expression Influences Starvation-Induced Autophagy and Cell Death vol.22, pp.24, 2021, https://doi.org/10.3390/ijms222413511
- CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression vol.17, pp.12, 2021, https://doi.org/10.1080/15548627.2021.1912270
- The N-terminal cysteine is a dual sensor of oxygen and oxidative stress vol.118, pp.50, 2017, https://doi.org/10.1073/pnas.2107993118
- AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells vol.39, pp.1, 2022, https://doi.org/10.1007/s12032-021-01601-y
- Ursolic acid ameliorates amyloid β-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome vol.88, pp.None, 2017, https://doi.org/10.1016/j.neuro.2021.12.004
- Hyperphosphatemia-induced degradation of transcription factor EB exacerbates vascular calcification vol.1868, pp.3, 2017, https://doi.org/10.1016/j.bbadis.2021.166323