DOI QR코드

DOI QR Code

Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy

  • Ji, Chang Hoon (Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University) ;
  • Kwon, Yong Tae (Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University)
  • Received : 2017.07.06
  • Accepted : 2017.07.12
  • Published : 2017.07.31

Abstract

Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.

Keywords

References

  1. Akutsu, M., Dikic, I., and Bremm, A. (2016). Ubiquitin chain diversity at a glance. J. Cell Sci. 129, 875-880. https://doi.org/10.1242/jcs.183954
  2. B'Chir, W., Maurin, A.C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699. https://doi.org/10.1093/nar/gkt563
  3. Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
  4. Bao, X., Ren, T., Huang, Y., Ren, C., Yang, K., Zhang, H., and Guo, W. (2017). Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma. Int. J. Oncol. 50, 477-486. https://doi.org/10.3892/ijo.2016.3806
  5. Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross, C.A., Scahill, R.I., Wetzel, R., et al. (2015). Huntington disease. Nat. Rev. Dis. Primers 1, 15005.
  6. Bayraktar, O., Oral, O., Kocaturk, N.M., Akkoc, Y., Eberhart, K., Kosar, A., and Gozuacik, D. (2016). IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation. PLoS One 11, e0164864. https://doi.org/10.1371/journal.pone.0164864
  7. Blessing, N.A., Brockman, A.L., and Chadee, D.N. (2014). The E3 ligase CHIP mediates ubiquitination and degradation of mixed-lineage kinase 3. Mol. Cell. Biol. 34, 3132-3143. https://doi.org/10.1128/MCB.00296-14
  8. Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L.H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., et al. (2016). Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl. Acad. Sci. USA 113, E4639-4647. https://doi.org/10.1073/pnas.1608644113
  9. Brown, N.G., VanderLinden, R., Watson, E.R., Weissmann, F., Ordureau, A., Wu, K.P., Zhang, W., Yu, S., Mercredi, P.Y., Harrison, J.S., et al. (2016). Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165, 1440-1453. https://doi.org/10.1016/j.cell.2016.05.037
  10. Budenholzer, L., Cheng, C.L., Li, Y., and Hochstrasser, M. (2017). Proteasome structure and Assembly. J. Mol. Biol. pii: S0022-2836(17)30270-X.
  11. Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Aminoterminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
  12. Cha-Molstad, H., Yu, J.E., Lee, S.H., Kim, J.G., Sung, K.S., Hwang, J., Yoo, Y.D., Lee, Y.J., Kim, S.T., Lee, D.H., et al. (2016). Modulation of SQSTM1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone HSPA5/GRP78/BiP. Autophagy 12, 426-428. https://doi.org/10.1080/15548627.2015.1126047
  13. Cha-Molstad, H., Yu, J.E., Lee, S.H., Feng, Z., Lee, S.H., Kim, J.G., Yang, P., Han, B., Sung, K.W., Yoo, Y.D., et al. (in press). p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway, which modulates autophagosome biogenesis. Nat. Commun.
  14. Ciechanover, A. (2015). The unravelling of the ubiquitin system. Na. Rev. Mol. Cell Biol. 16, 322-324. https://doi.org/10.1038/nrm3982
  15. Ciechanover, A., and Kwon, Y.T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 47, e147. https://doi.org/10.1038/emm.2014.117
  16. Ciechanover, A., and Kwon, Y.T. (2017). Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front. Neurosci. 11, 185.
  17. Cohen-Kaplan, V., Ciechanover, A., and Livneh, I. (2017). Stressinduced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy 13, 759-760. https://doi.org/10.1080/15548627.2016.1278327
  18. Collins, G.A., and Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell 169, 792-806. https://doi.org/10.1016/j.cell.2017.04.023
  19. Cristofani, R., Crippa, V., Rusmini, P., Cicardi, M.E., Meroni, M., Licata, N.V., Sala, G., Giorgetti, E., Grunseich, C., Galbiati, M., et al. (2017). Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy doi: 10.1080/15548627.2017.1308985. [Epub ahead of print].
  20. Crosas, B., Hanna, J., Kirkpatrick, D.S., Zhang, D.P., Tone, Y., Hathaway, N.A., Buecker, C., Leggett, D.S., Schmidt, M., King, R.W., et al. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413. https://doi.org/10.1016/j.cell.2006.09.051
  21. Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., and Corn, J.E. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169. https://doi.org/10.1038/ncb3097
  22. Deegan, S., Saveljeva, S., Gorman, A.M., and Samali, A. (2013). Stressinduced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci. 70, 2425-2441. https://doi.org/10.1007/s00018-012-1173-4
  23. Deng, Z., Purtell, K., Lachance, V., Wold, M.S., Chen, S., and Yue, Z. (2017). Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27, 491-504. https://doi.org/10.1016/j.tcb.2017.01.001
  24. Dwane, L., Gallagher, W.M., Ni Chonghaile, T., and O'Connor, D.P. (2017). The emerging role of non-traditional ubiquitination in oncogenic pathways. J. Biol. Chem. 292, 3543-3551. https://doi.org/10.1074/jbc.R116.755694
  25. Feng, L., Zhang, J., Zhu, N., Ding, Q., Zhang, X., Yu, J., Qiang, W., Zhang, Z., Ma, Y., Huang, D., et al. (2017). Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/alpha-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy 13, 686-702. https://doi.org/10.1080/15548627.2017.1280207
  26. Ferreira, J.V., Soares, A.R., Ramalho, J.S., Pereira, P., and Girao, H. (2015). K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci. Rep. 5, 10210. https://doi.org/10.1038/srep10210
  27. French, M.E., Klosowiak, J.L., Aslanian, A., Reed, S.I., Yates, J.R., 3rd and Hunter, T. (2017). Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J. Biol. Chem. 292, 10398-10413. https://doi.org/10.1074/jbc.M117.789479
  28. Gade, P., Ramachandran, G., Maachani, U.B., Rizzo, M.A., Okada, T., Prywes, R., Cross, A.S., Mori, K., and Kalvakolanu, D.V. (2012). An IFNgamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. USA 109, 10316-10321. https://doi.org/10.1073/pnas.1119273109
  29. Greene, C.M., Marciniak, S.J., Teckman, J., Ferrarotti, I., Brantly, M.L., Lomas, D.A., Stoller, J.K., and McElvaney, N.G. (2016). alpha1-Antitrypsin deficiency. Nat. Rev. Dis. Primers 2, 16051. https://doi.org/10.1038/nrdp.2016.51
  30. Grice, G.L., and Nathan, J.A. (2016). The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73, 3497-3506. https://doi.org/10.1007/s00018-016-2255-5
  31. Gu, D., Wang, S., Kuiatse, I., Wang, H., He, J., Dai, Y., Jones, R.J., Bjorklund, C.C., Yang, J., Grant, S., et al. (2014). Inhibition of the MDM2 E3 Ligase induces apoptosis and autophagy in wild-type and mutant p53 models of multiple myeloma, and acts synergistically with ABT-737. PLoS One 9, e103015. https://doi.org/10.1371/journal.pone.0103015
  32. Harada, M., Hanada, S., Toivola, D.M., Ghori, N., and Omary, M.B. (2008). Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47, 2026-2035. https://doi.org/10.1002/hep.22294
  33. Hetz, C., Chevet, E., and Oakes, S.A. (2015). Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829-838. https://doi.org/10.1038/ncb3184
  34. Hidvegi, T., Ewing, M., Hale, P., Dippold, C., Beckett, C., Kemp, C., Maurice, N., Mukherjee, A., Goldbach, C., Watkins, S., et al. (2010). An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229-232. https://doi.org/10.1126/science.1190354
  35. Hipp, M.S., Patel, C.N., Bersuker, K., Riley, B.E., Kaiser, S.E., Shaler, T.A., Brandeis, M., and Kopito, R.R. (2012). Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 196, 573-587. https://doi.org/10.1083/jcb.201110093
  36. Hyttinen, J.M., Amadio, M., Viiri, J., Pascale, A., Salminen, A., and Kaarniranta, K. (2014). Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18, 16-28. https://doi.org/10.1016/j.arr.2014.07.002
  37. Jing, K., Song, K.S., Shin, S., Kim, N., Jeong, S., Oh, H.R., Park, J.H., Seo, K.S., Heo, J.Y., Han, J., et al. (2011). Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7, 1348-1358. https://doi.org/10.4161/auto.7.11.16658
  38. Kim, H.C., and Huibregtse, J.M. (2009). Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307-3318. https://doi.org/10.1128/MCB.00240-09
  39. Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, R., Rush, J., Comb, M.J., et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340. https://doi.org/10.1016/j.molcel.2011.08.025
  40. Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516. https://doi.org/10.1016/j.molcel.2009.01.020
  41. Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009). Autophagy inhibition compromises degradation of ubiquitinproteasome pathway substrates. Mol. Cell 33, 517-527. https://doi.org/10.1016/j.molcel.2009.01.021
  42. Kwon, Y.T., Reiss, Y., Fried, V.A., Hershko, A., Yoon, J.K., Gonda, D.K., Sangan, P., Copeland, N.G., Jenkins, N.A., and Varshavsky, A. (1998). The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95, 7898-7903. https://doi.org/10.1073/pnas.95.14.7898
  43. Kwon, Y.T., Kashina, A.S., and Varshavsky, A. (1999). Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the Nend rule pathway. Mol. Cell. Biol. 19, 182-193. https://doi.org/10.1128/MCB.19.1.182
  44. Kwon, Y.T., Kashina, A.S., Davydov, I.V., Hu, R.G., An, J.Y., Seo, J.W., Du, F., and Varshavsky, A. (2002). An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96-99. https://doi.org/10.1126/science.1069531
  45. Lagunas-Martinez, A., Garcia-Villa, E., Arellano-Gaytan, M., Contreras-Ochoa, C.O., Dimas-Gonzalez, J., Lopez-Arellano, M.E., Madrid-Marina, V., and Gariglio, P. (2017). MG132 plus apoptosis antigen-1 (APO-1). antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes. Apoptosis 22, 27-40. https://doi.org/10.1007/s10495-016-1299-1
  46. Liu, W., Shang, Y., and Li, W. (2014). gp78 elongates of polyubiquitin chains from the distal end through the cooperation of its G2BR and CUE domains. Sci. Rep. 4, 7138.
  47. Liu, C., Liu, W., Ye, Y., and Li, W. (2017). Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat. Commun. 8, 14274. https://doi.org/10.1038/ncomms14274
  48. Locke, M., Toth, J.I., and Petroski, M.D. (2014). Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulumassociated degradation. Biochem. J. 459, 205-216. https://doi.org/10.1042/BJ20120662
  49. Lu, D., Girard, J.R., Li, W., Mizrak, A., and Morgan, D.O. (2015a). Quantitative framework for ordered degradation of APC/C substrates. BMC Biol. 13, 96. https://doi.org/10.1186/s12915-015-0205-6
  50. Lu, Y., Lee, B.H., King, R.W., Finley, D., and Kirschner, M.W. (2015b). Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 348, 1250834. https://doi.org/10.1126/science.1250834
  51. Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015). Autophagic Degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis. Mol. Cell 58, 1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023
  52. Marshall, R.S., McLoughlin, F., and Vierstra, R.D. (2016). Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep. 16, 1717-1732. https://doi.org/10.1016/j.celrep.2016.07.015
  53. Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M., and Nukina, N. (2011). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279-289. https://doi.org/10.1016/j.molcel.2011.07.039
  54. McKeon, J.E., Sha, D., Li, L., and Chin, L.S. (2015). Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell. Mol. Life Sci. 72, 1811-1824. https://doi.org/10.1007/s00018-014-1781-2
  55. Minoia, M., Boncoraglio, A., Vinet, J., Morelli, F.F., Brunsting, J.F., Poletti, A., Krom, S., Reits, E., Kampinga, H.H., and Carra, S. (2014). BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10, 1603-1621. https://doi.org/10.4161/auto.29409
  56. Morris, J.R., and Garvin, A.J. (2017). SUMO in the DNA doublestranded break response: similarities, differences, and cooperation with ubiquitin. J. Mol. Biol. pii: S0022-2836(17)30227-9.
  57. Mrschtik, M., O'Prey, J., Lao, L.Y., Long, J.S., Beaumatin, F., Strachan, D., O'Prey, M., Skommer, J., and Ryan, K.M. (2015). DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose. Cell Death Differ. 22, 1714-1726. https://doi.org/10.1038/cdd.2015.26
  58. Munch, D., Rodriguez, E., Bressendorff, S., Park, O.K., Hofius, D., and Petersen, M. (2014). Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy 10, 1579-1587. https://doi.org/10.4161/auto.29406
  59. Ohtake, F., and Tsuchiya, H. (2017). The emerging complexity of ubiquitin architecture. J. Biochem. 161, 125-133.
  60. Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., and Le, W. (2008). Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 32, 16-25. https://doi.org/10.1016/j.nbd.2008.06.003
  61. Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
  62. Park, H.S., Jun do, Y., Han, C.R., Woo, H.J., and Kim, Y.H. (2011). Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase p56lck in human Jurkat T cells. Biochem. Pharmacol.82, 1110-1125. https://doi.org/10.1016/j.bcp.2011.07.085
  63. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
  64. Qin, Y., Zhou, M.T., Hu, M.M., Hu, Y.H., Zhang, J., Guo, L., Zhong, B., and Shu, H.B. (2014). RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathogens 10, e1004358. https://doi.org/10.1371/journal.ppat.1004358
  65. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73-84. https://doi.org/10.1016/j.cell.2004.11.013
  66. Riley, B.E., Kaiser, S.E., Shaler, T.A., Ng, A.C., Hara, T., Hipp, M.S., Lage, K., Xavier, R.J., Ryu, K.Y., Taguchi, K., et al. (2010). Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191, 537-552. https://doi.org/10.1083/jcb.201005012
  67. Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., and Tanaka, K. (2009). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359-371. https://doi.org/10.1038/emboj.2008.305
  68. Scott, D., Oldham, N.J., Strachan, J., Searle, M.S., and Layfield, R. (2015). Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 15, 844-861. https://doi.org/10.1002/pmic.201400341
  69. Seeler, J.S., and Dejean, A. (2017). SUMO and the robustness of cancer. Nat. Rev. Cancer 17, 184-197. https://doi.org/10.1038/nrc.2016.143
  70. Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
  71. Stolz, A., Ernst, A., and Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501. https://doi.org/10.1038/ncb2979
  72. Suber, T., Wei, J., Jacko, A.M., Nikolli, I., Zhao, Y., Zhao, J., and Mallampalli, R.K. (2017). SCFFBXO17 E3 ligase modulates inflammation by regulating proteasomal degradation of glycogen synthase kinase-3beta in lung epithelia. J. Biol. Chem. 292, 7452-7461. https://doi.org/10.1074/jbc.M116.771667
  73. Swatek, K.N., and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399-422. https://doi.org/10.1038/cr.2016.39
  74. Tasaki, T., Mulder, L.C., Iwamatsu, A., Lee, M.J., Davydov, I.V., Varshavsky, A., Muesing, M., and Kwon, Y.T. (2005). A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Molecular and cellular biology 25, 7120-7136. https://doi.org/10.1128/MCB.25.16.7120-7136.2005
  75. Tasaki, T., Sriram, S.M., Park, K.S., and Kwon, Y.T. (2012). The N-end rule pathway. Ann. Rev. Biochem. 81, 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
  76. Tasaki, T., Kim, S.T., Zakrzewska, A., Lee, B.E., Kang, M.J., Yoo, Y.D., Cha-Molstad, H.J., Hwang, J., Soung, N.K., Sung, K.S., et al. (2013). UBR box N-recognin-4 (UBR4)., an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc. Natl. Acad. Sci. USA 110, 3800-3805. https://doi.org/10.1073/pnas.1217358110
  77. Taylor, J.P., Brown, R.H., Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to mechanism. Nature 539, 197-206. https://doi.org/10.1038/nature20413
  78. Tomar, D., Prajapati, P., Sripada, L., Singh, K., Singh, R., Singh, A.K., and Singh, R. (2013). TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death. Biochim. Biophys. Acta 1833, 3134-3144. https://doi.org/10.1016/j.bbamcr.2013.08.021
  79. van Wijk, S.J., Fiskin, E., Putyrski, M., Pampaloni, F., Hou, J., Wild, P., Kensche, T., Grecco, H.E., Bastiaens, P., and Dikic, I. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47, 797-809. https://doi.org/10.1016/j.molcel.2012.06.017
  80. Wang, J., Kang, R., Huang, H., Xi, X., Wang, B., Wang, J., and Zhao, Z. (2014). Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 10, 766-784. https://doi.org/10.4161/auto.27954
  81. White, E. (2016). Autophagy and p53. Cold Spring Harb. Perspect Med. 6, a026120. https://doi.org/10.1101/cshperspect.a026120
  82. Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233. https://doi.org/10.1126/science.1205405
  83. Wurzer, B., Zaffagnini, G., Fracchiolla, D., Turco, E., Abert, C., Romanov, J., and Martens, S. (2015). Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife 4, e08941.
  84. Yamano, K., Matsuda, N., and Tanaka, K. (2016). The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316. https://doi.org/10.15252/embr.201541486
  85. Yau, R., and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579-586. https://doi.org/10.1038/ncb3358
  86. Zaffagnini, G., and Martens, S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714-1724. https://doi.org/10.1016/j.jmb.2016.02.004
  87. Zalckvar, E., Berissi, H., Eisenstein, M., and Kimchi, A. (2009). Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722. https://doi.org/10.4161/auto.5.5.8625
  88. Zhang, X.D., Qi, L., Wu, J.C., and Qin, Z.H. (2013). DRAM1 regulates autophagy flux through lysosomes. PLoS one 8, e63245. https://doi.org/10.1371/journal.pone.0063245
  89. Zhang, H.T., Zeng, L.F., He, Q.Y., Tao, W.A., Zha, Z.G., and Hu, C.D. (2016). The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim. Biophys. Acta 1863, 335-346. https://doi.org/10.1016/j.bbamcr.2015.12.001
  90. Zhang, Z., Wang, H., Ding, Q., Xing, Y., Xu, D., Xu, Z., Zhou, T., Qian, B., Ji, C., Pan, X., et al. (2017). The tumor suppressor p53 regulates autophagosomal and lysosomal biogenesis in lung cancer cells by targeting transcription factor EB. Biomed. Pharmacother. 89, 1055-1060. https://doi.org/10.1016/j.biopha.2017.02.103

Cited by

  1. Mild Exercise Differently Affects Proteostasis and Oxidative Stress on Motor Areas During Neurodegeneration: A Comparative Study of Three Treadmill Running Protocols pp.1476-3524, 2018, https://doi.org/10.1007/s12640-018-9966-3
  2. Cyclin D1-CDK4 activity drives sensitivity to bortezomib in mantle cell lymphoma by blocking autophagy-mediated proteolysis of NOXA vol.11, pp.1, 2018, https://doi.org/10.1186/s13045-018-0657-6
  3. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome vol.131, pp.17, 2018, https://doi.org/10.1242/jcs.217646
  4. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration vol.55, pp.8, 2018, https://doi.org/10.1007/s12035-017-0856-0
  5. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01024
  6. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00339
  7. N-degron and C-degron pathways of protein degradation vol.116, pp.2, 2019, https://doi.org/10.1073/pnas.1816596116
  8. Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-11202-3
  9. Targeting Chaperone-Mediated Autophagy for Disease Therapy vol.4, pp.3, 2018, https://doi.org/10.1007/s40495-018-0138-1
  10. Bortezomib enhances radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6 oncoprotein degradation vol.37, pp.1, 2017, https://doi.org/10.1186/s13046-018-0760-0
  11. A Structural View of Xenophagy, a Battle between Host and Microbes vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.2274
  12. When nature’s robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies vol.15, pp.4, 2018, https://doi.org/10.1080/14789450.2018.1453362
  13. The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins vol.7, pp.8, 2018, https://doi.org/10.3390/cells7080091
  14. Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-33630-5
  15. Afobazole Restores the Dopamine Level in a 6-Hydroxydopamine Model of Parkinson’s Disease vol.13, pp.1, 2017, https://doi.org/10.1134/s1819712419010185
  16. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010040
  17. Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4741252
  18. Autophagic Degradation of Misfolded Nuclear Receptor Co-repressor (NCoR) Is Linked to the Growth of Tumor Cells in HBX Positive Hepatocellular Carcinoma (HCC) vol.9, pp.None, 2017, https://doi.org/10.3389/fonc.2019.01335
  19. Exportin‐T promotes tumor proliferation and invasion in hepatocellular carcinoma vol.58, pp.2, 2017, https://doi.org/10.1002/mc.22928
  20. ARL4C stabilized by AKT/mTOR pathway promotes the invasion of PTEN‐deficient primary human glioblastoma vol.247, pp.2, 2017, https://doi.org/10.1002/path.5189
  21. Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo vol.8, pp.3, 2019, https://doi.org/10.3390/cells8030211
  22. The Role of Primary Cilia in the Crosstalk between the Ubiquitin–Proteasome System and Autophagy vol.8, pp.3, 2017, https://doi.org/10.3390/cells8030241
  23. Changes in expression of the autophagy-related genes microtubule-associated protein 1 light chain 3β and autophagy related 7 in skeletal muscle of fattening Japanese Black cattle: a pilot study vol.32, pp.4, 2019, https://doi.org/10.5713/ajas.18.0370
  24. Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity vol.20, pp.9, 2017, https://doi.org/10.3390/ijms20092197
  25. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function vol.316, pp.5, 2017, https://doi.org/10.1152/ajpcell.00500.2018
  26. Modulation of Amyloid States by Molecular Chaperones vol.11, pp.7, 2019, https://doi.org/10.1101/cshperspect.a033969
  27. Ubiquitin Extension Protein UEP1 Modulates Cell Death and Resistance to Various Pathogens in Tobacco vol.109, pp.7, 2019, https://doi.org/10.1094/phyto-06-18-0212-r
  28. Proteasome Activation as a New Therapeutic Approach To Target Proteotoxic Disorders vol.62, pp.14, 2017, https://doi.org/10.1021/acs.jmedchem.9b00101
  29. Proteasome Activation to Combat Proteotoxicity vol.24, pp.15, 2017, https://doi.org/10.3390/molecules24152841
  30. Gid10 as an alternative N-recognin of the Pro/N-degron pathway vol.116, pp.32, 2017, https://doi.org/10.1073/pnas.1908304116
  31. Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity vol.11, pp.16, 2017, https://doi.org/10.18632/aging.102177
  32. C9orf72 Proteins Regulate Autophagy and Undergo Autophagosomal or Proteasomal Degradation in a Cell Type-Dependent Manner vol.8, pp.10, 2019, https://doi.org/10.3390/cells8101233
  33. Autophagie et spermatozoïde vol.35, pp.11, 2017, https://doi.org/10.1051/medsci/2019172
  34. Juvenile Huntington’s Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mu vol.20, pp.21, 2019, https://doi.org/10.3390/ijms20215338
  35. Ochratoxin A Sequentially Activates Autophagy and the Ubiquitin-Proteasome System vol.11, pp.11, 2017, https://doi.org/10.3390/toxins11110615
  36. Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors vol.84, pp.11, 2017, https://doi.org/10.1134/s0006297919110117
  37. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer vol.18, pp.1, 2019, https://doi.org/10.1186/s12943-019-1105-0
  38. Inhibition of Embryonic HSP 90 Function Promotes Variation of Cold Tolerance in Zebrafish vol.11, pp.None, 2017, https://doi.org/10.3389/fgene.2020.541944
  39. The Role of Ubiquitin E3 Ligase in Atherosclerosis vol.27, pp.None, 2017, https://doi.org/10.2174/0929867327666200306124418
  40. Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice vol.9, pp.None, 2017, https://doi.org/10.7554/elife.56590
  41. Cardioprotective Role of Melatonin in Acute Myocardial Infarction vol.11, pp.None, 2020, https://doi.org/10.3389/fphys.2020.00366
  42. KLICK Syndrome Linked to a POMP Mutation Has Features Suggestive of an Autoinflammatory Keratinization Disease vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.00641
  43. FAIM Is a Non-redundant Defender of Cellular Viability in the Face of Heat and Oxidative Stress and Interferes With Accumulation of Stress-Induced Protein Aggregates vol.7, pp.None, 2017, https://doi.org/10.3389/fmolb.2020.00032
  44. Multiple Functions of ATG8 Family Proteins in Plant Autophagy vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00466
  45. Comment on “Everolimus induces G1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells” vol.318, pp.2, 2017, https://doi.org/10.1152/ajpcell.00421.2019
  46. Evolution of Substrates and Components of the Pro/N-Degron Pathway vol.59, pp.4, 2017, https://doi.org/10.1021/acs.biochem.9b00953
  47. The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells vol.39, pp.4, 2017, https://doi.org/10.1177/0960327119896614
  48. Investigating AKT activation and autophagy in immunoproteasome-deficient retinal cells vol.15, pp.4, 2017, https://doi.org/10.1371/journal.pone.0231212
  49. Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy vol.104, pp.9, 2017, https://doi.org/10.1007/s00253-020-10518-x
  50. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum vol.9, pp.5, 2017, https://doi.org/10.3390/cells9051179
  51. Transcriptome sequencing analysis of mono-ADP-ribosylation in colorectal cancer cells vol.43, pp.5, 2020, https://doi.org/10.3892/or.2020.7516
  52. High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11) vol.295, pp.20, 2017, https://doi.org/10.1074/jbc.ra119.012213
  53. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy vol.25, pp.10, 2017, https://doi.org/10.3390/molecules25102352
  54. Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling vol.117, pp.20, 2017, https://doi.org/10.1073/pnas.2003043117
  55. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway vol.117, pp.25, 2017, https://doi.org/10.1073/pnas.2007085117
  56. How autophagy can restore proteostasis defects in multiple diseases? vol.40, pp.4, 2020, https://doi.org/10.1002/med.21662
  57. CD133 inhibition via autophagic degradation in pemetrexed-resistant lung cancer cells by GMI, a fungal immunomodulatory protein from Ganoderma microsporum vol.123, pp.3, 2020, https://doi.org/10.1038/s41416-020-0885-8
  58. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway vol.59, pp.30, 2017, https://doi.org/10.1021/acs.biochem.0c00514
  59. Nifedipine-induced AMPK activation alleviates senescence by increasing autophagy and suppressing of Ca2+ levels in vascular smooth muscle cells vol.190, pp.None, 2017, https://doi.org/10.1016/j.mad.2020.111314
  60. RNF115 deletion inhibits autophagosome maturation and growth of gastric cancer vol.11, pp.9, 2017, https://doi.org/10.1038/s41419-020-03011-w
  61. The Roles of Ubiquitin in Mediating Autophagy vol.9, pp.9, 2020, https://doi.org/10.3390/cells9092025
  62. RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells vol.11, pp.10, 2017, https://doi.org/10.1038/s41419-020-03096-3
  63. IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER vol.319, pp.4, 2017, https://doi.org/10.1152/ajpendo.00071.2020
  64. Autophagic receptor p62 protects against glycation‐derived toxicity and enhances viability vol.19, pp.11, 2017, https://doi.org/10.1111/acel.13257
  65. Gastric cancer: a comprehensive review of current and future treatment strategies vol.39, pp.4, 2020, https://doi.org/10.1007/s10555-020-09925-3
  66. Exercise Training Attenuates Ubiquitin-Proteasome Pathway and Increases the Genes Related to Autophagy on the Skeletal Muscle of Patients With Inflammatory Myopathies vol.27, pp.6, 2021, https://doi.org/10.1097/rhu.0000000000001721
  67. Sorting Nexins in Protein Homeostasis vol.10, pp.1, 2017, https://doi.org/10.3390/cells10010017
  68. A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.762751
  69. SC75741, A Novel c-Abl Inhibitor, Promotes the Clearance of TDP25 Aggregates via ATG5-Dependent Autophagy Pathway vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.741219
  70. Tumor Susceptibility Gene 101 facilitates rapamycin-induced autophagic flux in neuron cells vol.134, pp.None, 2017, https://doi.org/10.1016/j.biopha.2020.111106
  71. The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries vol.22, pp.4, 2017, https://doi.org/10.3390/ijms22041875
  72. Role of the Ubiquitin System in Chronic Pain vol.14, pp.None, 2017, https://doi.org/10.3389/fnmol.2021.674914
  73. Co-Chaperone Bag-1 Plays a Role in the Autophagy-Dependent Cell Survival through Beclin 1 Interaction vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26040854
  74. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis vol.22, pp.3, 2017, https://doi.org/10.15252/embr.202051063
  75. Toward Understanding the Biochemical Determinants of Protein Degradation Rates vol.6, pp.8, 2017, https://doi.org/10.1021/acsomega.0c05318
  76. The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy vol.13, pp.2, 2017, https://doi.org/10.1007/s12551-021-00789-7
  77. Switching the Proteolytic System from the Ubiquitin–Proteasome System to Autophagy in the Spinal Cord of an Amyotrophic Lateral Sclerosis Mouse Model vol.466, pp.None, 2021, https://doi.org/10.1016/j.neuroscience.2021.04.034
  78. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors vol.71, pp.None, 2017, https://doi.org/10.1016/j.tice.2021.101513
  79. The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy vol.10, pp.8, 2021, https://doi.org/10.3390/cells10081852
  80. New Avenues for the Treatment of Huntington’s Disease vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168363
  81. Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169042
  82. α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092229
  83. Interactions between long non‑coding RNAs and RNA‑binding proteins in cancer (Review) vol.46, pp.6, 2017, https://doi.org/10.3892/or.2021.8207
  84. Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway vol.118, pp.43, 2021, https://doi.org/10.1073/pnas.2115430118
  85. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis vol.33, pp.11, 2017, https://doi.org/10.1093/plcell/koab210
  86. UBB+1 reduces amyloid-β cytotoxicity by activation of autophagy in yeast vol.13, pp.21, 2021, https://doi.org/10.18632/aging.203681
  87. Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine vol.12, pp.4, 2017, https://doi.org/10.1007/s13167-021-00256-z
  88. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-21715-1
  89. Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells vol.10, pp.12, 2021, https://doi.org/10.3390/cells10123394
  90. (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells vol.22, pp.23, 2017, https://doi.org/10.3390/ijms222313170
  91. Interdependent Regulation of Polycystin Expression Influences Starvation-Induced Autophagy and Cell Death vol.22, pp.24, 2021, https://doi.org/10.3390/ijms222413511
  92. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression vol.17, pp.12, 2021, https://doi.org/10.1080/15548627.2021.1912270
  93. The N-terminal cysteine is a dual sensor of oxygen and oxidative stress vol.118, pp.50, 2017, https://doi.org/10.1073/pnas.2107993118
  94. AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells vol.39, pp.1, 2022, https://doi.org/10.1007/s12032-021-01601-y
  95. Ursolic acid ameliorates amyloid β-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome vol.88, pp.None, 2017, https://doi.org/10.1016/j.neuro.2021.12.004
  96. Hyperphosphatemia-induced degradation of transcription factor EB exacerbates vascular calcification vol.1868, pp.3, 2017, https://doi.org/10.1016/j.bbadis.2021.166323