References
- Arnaout, M.A. (2002). Integrin structure: new twists and turns in dynamic cell adhesion, Immunol. Rev. 186, 125-140. https://doi.org/10.1034/j.1600-065X.2002.18612.x
- Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041. https://doi.org/10.1073/pnas.181342398
- Chavakis, T., Bierhaus, A., Al-Fakhri, N., Schneider, D., Witte, S., Linn, T., Nagashima, M., Morser, J., Arnold, B., Preissner, K.T., et al. (2003). The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J. Exp. Med. 198, 1507-1515. https://doi.org/10.1084/jem.20030800
-
Choi, J., Leyton, L., and Nham, S.-U. (2005). Characterization of
${\alpha}$ X Idomain binding to Thy-1. Biochem. Biophy. Res. Comm. 331, 557-561. https://doi.org/10.1016/j.bbrc.2005.04.006 -
Choi, J., Choi, J., and Nham, S.-U. (2010). Characterization of the residues of
${\alpha}$ X I-domain and ICAM-1 mediating their interactions. Mol. Cells 30, 227-234. https://doi.org/10.1007/s10059-010-0111-2 - Deane, R., Yan, S.D., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907-913. https://doi.org/10.1038/nm890
- Foster, G.A., Xu, L., Chidambaram, A.A., Soderberg, S.R., Armstrong, E.J., Wu, H., and Simon, S.I. (2015). CD11c/CD18 signals Very Late Antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia. J. Immunol.195, 5380-5392. https://doi.org/10.4049/jimmunol.1501077
- Frommhold, D., Kamphues,A., Hepper, I., Pruenster, M., Lukic, I.K., Socher, I., Zablotskaya, V., Buschmann, K., Lange-Sperandio, B., Schymeinsky, J., et al. (2010). RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 116, 841-849. https://doi.org/10.1182/blood-2009-09-244293
-
Gang, J., Choi, J., Lee, J.H., and Nham, S.-U. (2007). Identification of critical residues for plasminogen binding by the
${\alpha}$ X I-domain of the${\beta}$ 2 integrin,${\alpha}$ X${\beta}$ 2, Mol. Cells 24, 240-246. - Higgins, D.R. (1995). Heterologous protein expression in the methylotrophic yeast Pichia pastoris, in: J.E. Coligan, B.M. Dunn, H.L. Ploegh, D.W. Speicher, P.T. Wingfield., eds., (Current protocols in protein science, John Wiley & Sons, Inc.), pp. 5.7.1-5.7.16.
- Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., et al. (1999). RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889-901. https://doi.org/10.1016/S0092-8674(00)80801-6
- Hogg, N., Takacs, L., Palmer, D.G., Selvendran, Y., and Allen, C. (1986). The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur. J. Immunol. 16, 240-248. https://doi.org/10.1002/eji.1830160306
- Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D., et al. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. J. Biol. Chem. 270, 25752-25761. https://doi.org/10.1074/jbc.270.43.25752
- Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687. https://doi.org/10.1016/S0092-8674(02)00971-6
- Kierdorf, K., and Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. J. Leukoc. Biol. 94, 55-68. https://doi.org/10.1189/jlb.1012519
- Koch, M., Chitayat, S., Dattilo, B.M., Schiefner, A., Diez, J., Chazin, W.J., and Fritz, G. (2010). Structural basis for ligand recognition and activation of RAGE. Structure 18, 1342-1352. https://doi.org/10.1016/j.str.2010.05.017
- Korndorfer, I. P., Brueckner, F., and Skerra, A. (2007). The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J. Mol. Biol. 370, 887-898. https://doi.org/10.1016/j.jmb.2007.04.065
- Leclerc, E., Fritz, G., Weibel, M., Heizmann, C.W., and Galichet, A. (2007). S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J. Biol. Chem. 282, 31317-31331. https://doi.org/10.1074/jbc.M703951200
-
Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R.C. (1995). Crystal structure of the A domain from the
${\alpha}$ subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638. https://doi.org/10.1016/0092-8674(95)90517-0 -
Lee, J.H., Choi, J., and Nham, S.-U. (2007). Critical residues of
${\alpha}$ X Idomain recognizing fibrinogen central domain. Biochem. Biophys. Res. Comm. 355, 1058-1063. https://doi.org/10.1016/j.bbrc.2007.02.082 - Luo, B.-H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619-647 https://doi.org/10.1146/annurev.immunol.25.022106.141618
- Matsumoto, S., Yoshida,T., Murata, H., Harada, S., Fujita, N., Nakamura, S., Yamamoto, Y., Watanabe, T., Yonekura, H., Yamamoto, H., et al. (2008). Solution structure of the variable-type domain of the receptor for advanced glycation end products: new insight into AGE-RAGE interaction. Biochemistry 47, 12299-12311. https://doi.org/10.1021/bi800910v
-
Meunier, L., Bohjanen, K., Voorhees, J.J., and Cooper, K.D. (1994). Retinoic acid upregulates human Langerhans cell antigen presentation and surface expression of HLA-DR and CD11c, a
${\beta}$ 2 integrin critically involved in T-cell activation. J. Invest. Dermatol. 103, 775-779. https://doi.org/10.1111/1523-1747.ep12413014 - Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
-
Sambrook, J., and Russell, D.W. (2001). Purification of histidinetagged proteins by immobilized
$Ni^{2+}$ absorption chromatography, in: Molecular Cloning, a laboratory manual, (Cold Spring Harbor Laboratory Press, New York), pp. 15.44-15.48. - Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R., and Coyle, A.J. (2010). HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367-388. https://doi.org/10.1146/annurev.immunol.021908.132603
- Sousa, M.M., Yan, S.D., Stern, D., and Saraiva, J.M. (2000). Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NFkB) activation. Lab. Invest. 80, 1101-1110. https://doi.org/10.1038/labinvest.3780116
- Stacker, S.A., and Springer, T.A. (1991). Leukocyte integrin P150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium. J. Immunol. 146, 648-655.
-
Sturchler, E., Galichet, A., Weibel, M., Leclerc, E., and Heizmann, C.W. (2008). Site-specific blockade of RAGE-Vd prevents amyloid-
${\beta}$ oligomer neurotoxicity. J. Neurosci. 28, 5149-5158. https://doi.org/10.1523/JNEUROSCI.4878-07.2008 -
Tan, S. M. (2012). The leucocyte
${\beta}$ 2 (CD18) integrins: the structure, functional regulation and signaling properties. Biosci. Rep. 32, 241-269. https://doi.org/10.1042/BSR20110101 -
Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T.A. (2003). Structure and allosteric regulation of the
${\alpha}$ X${\beta}$ 2 integrin I-domain. Proc. Natl. Acad. Sci. USA 100, 1873-1878. https://doi.org/10.1073/pnas.0237387100 -
Vorup-Jensen, T., Carman, C.V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T.A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin
${\alpha}$ X${\beta}$ 2. Proc. Natl. Acad. Sci. U S A. 102, 1614-1619. https://doi.org/10.1073/pnas.0409057102 -
Wu, H., Gower, R.M., Wang, H., Perrard, X.-Y., Ma, R., Bullard, D.C., Burns, A.R., Paul, A., Smith, C.W., Simon, S.I., et al. (2009). Functional role of
$CD11c^+$ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119, 2708-2717. https://doi.org/10.1161/CIRCULATIONAHA.108.823740 - Xiong, J.P., Li, R., Essafi, M., Stehle, T., and Arnaout, M.A. (2000). An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J. Biol. Chem. 275, 38762-38768. https://doi.org/10.1074/jbc.C000563200
- Zen, K., Chen, C.X., Chen, Y.T., Wilton, R., and Liu, Y. (2007). Receptor for advanced glycation endproducts mediates neutrophil migration across intestinal epithelium. J. Immunol. 178, 2483-2490. https://doi.org/10.4049/jimmunol.178.4.2483
- Zieman, S.J., and Kass, D.A. (2004). Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 64, 459-470. https://doi.org/10.2165/00003495-200464050-00001