J. Soil Groundwater Environ. Vol. 22(3), p. 10~17, 2017

≪ Technical Note ≫

주성분 분석을 이용한 해안지역 결정질 기반암 지하수의 수리지구화학적 평가

이정환 · 윤정현 · 정재열* · 정해룡 · 김수진 한국원자력환경공단

Hydrogeochemical Evaluation of Crystalline bedrock Grondwater in a Coastal Area using Principal Component Analysis

Jeong-Hwan Lee · Jeong Hyoun Yoon · Jae-Yeol Cheong* · Haeryong Jung · Soo-Gin Kim Korea Radioactive Waste Agency

ABSTRACT

In this study, the evolution and origin of major dissolved constituents of crystalline bedrock groundwater in a coastal area were evaluated using multivariate statistical and groundwater quality analyses. The groundwater types mostly belonged to the Na(Ca)-HCO₃ and Ca-HCO₃ types, indicating the effect of cation exchange. Stable isotopes of water showed two areas divided by first and secondary evaporative effects, indicating a pattern of rapid hydrological cycling. Saturation indices of minerals showed undersaturation states. Thus, the degree of evolution of groundwater is suggested as in the low to intermediate stage, based on field and laboratory analytical conditions. According to the principal component analysis (PCA) results, the chemical components of EC, Ca²⁺, Mg²⁺, K⁺, HCO₃⁻, SO₄²⁻ (PCA 1), F⁻ (PCA 3), SiO₂ (PCA 4), and Fe²⁺ (PCA 5) are derived from various water-rock interactions. However, NO₃⁻, Na⁺, and Cl⁻ (PCA 2) represented the chemical characteristics of both anthropogenic sources and natural sea spray.

Key words : Groundwater type, Principal component analysis, Water-rock interaction, Evolution of groundwater, Sea spray

1. 서 론

18세기 산업혁명 이후 산업화 사회로의 전환으로 인해 기하급수적으로 전기에너지의 사용량이 증대되고 있다. 대 부분의 전기에너지는 화석연료에 의한 화력발전소로부터 대부분 생산되어 왔으나, 화석연료의 단가 상승 및 전력 발전 효율성 등으로 인해 많은 한계점들이 발생되고 있다. 이러한 화석발전의 대안으로서 경제적인이고 친환경적인 원자력 발전에 의한 전기에너지의 사용이 전세계적으로 확대되고 있으나, 원자력 발전 후 발생되는 다양한 방사 성폐기물 안전한 관리대책의 모색이 동시에 요구되고 있 다(Gascoyne and Laaksoharju, 2008).

방사성폐기물의 안전한 관리방안 중 가장 안전한 접근 방법으로 도출된 심층 처분방식은 방사성폐기물의 최종 단계를 의미하며 처분 안전성의 성능을 보장하기 위해서 방사성핵종의 이동에 대해 요구되는 격납과 격리를 제공 하는 것을 포함한다(IAEA, 2003). 이러한 심층처분 안전 성 성능은 시설이 위치되는 부지의 수리지질 및 수리화학 적 시스템에 크게 좌우된다(Choi et al., 2008; Kim et al., 2008; Posiva, 2011). 특히, 심부 지하수 화학적 환경 은 방사성 핵종의 제한고체상 및 용해도, 핵종이동 및 흡 착 등에 직접적으로 영향을 미친다. 또한 심층처분 안전 성을 규명하기 위한 지하수 진화의 기준 조건 설정 및 고수리지구화학적 진화특성 규명에도 활용될 수 있다 (SKB, 2002).

방사성폐기물 처분과 관련하여 국내에서 수행된 수리화 학적 특성 규명 연구들은 다수가 수행되어져 왔으나(Ji et al., 2008; Oh and Kim, 2008; Lee et al., 2016), 지하

^{*}Corresponding author : jjy@korad.or.kr

Received : 2016. 12. 13 Reviewed : 2016. 12. 20 Accepted : 2017. 6. 20

Discussion until: 2017. 8. 31

수의 주성분 이온들과 안정동위원소 결과를 활용한 심부 지하수 환경의 특성을 규명한 연구는 상대적으로 부족한 실정이다. 따라서, 본 연구는 해안지역 결정질 기반의 지 하수 화학성분과 안정동위원소 분석을 통해 방사성폐기물 처분부지 주변의 지하수 진화환경 및 지하수 성분들의 기 원을 규명하고자 한다.

2. 연구지역

연구지역은 해발고도가 300 m 이하로서 지형경사는 약 30% 내로 서측으로는 산지 및 구릉지, 동측으로는 동해 안과 인접하고 있다. 지질 분포는 백악기의 퇴적암, 제3기 화성암(섬록암, 화강섬록암, 흑운모화강암, 유문암, 반상질 조면암질 안산암), 제4기 충적층 등이 나타난다(Fig 1; Hwang et al., 2007). 백악기 퇴적암은 연구지역의 남측 및 서측에 널리 위치하고 제3기 화성암의 관입에 따른 열 접촉변성작용으로 흔펠스화되어 있다. 제3기 화성암 중에 서 섬록암과 화강섬록암은 연구지역 중앙부에 분포하며, 구성광물로는 사장석, 흑운모, 녹리석, 석영 등이 포함된 다. 유문암은 북측에 유상구조로 분포되며, 사장석과 각섬 석이 반정으로 관측된다. 또한 연구지역에는 국소적인 5 개(Z21, Z22, Z23, Z31, Z32)의 단열들이 분포하고 있 다(Kim et al., 2008). 연평균 강수량은 약 1,281 mm로 서, 6월에서 9월 사이에 강수량이 집중되는 계절적인 변 동을 나타낸다(Lee et al., 2016).

3. 연구방법

3.1. 화학분석 방법

연구지역에 분포되는 12개 지하수공(KB-1, KB-2, KB-3, KB-5, KB-6, KB-7, KB-10, KB-11, KB-13, KB-14, KB-15, KB-16-2)에 대해서, 2006년 동안 4차례(5월, 8월, 10월, 12월) 걸쳐서 지하수를 채취하고 실내·외 분석을 실시하였다.

실외분석에는 온도, pH, 산화·환원전위(Eh), 전기전도도 (EC), 용존산소(DO), 알칼리도 등을 측정하였다. 온도, pH, Eh, EC, DO는 Orion사의 Multi-parameter(Model No. 1230)을 이용하여 pH전극(모델No. 9107WP), Eh전 극(모델 No. 9678BN), 전기전도도 전극(모델 No. 013010), 용존산소 전극(모델 No. 083010)의 검침기를 활용하였다. 알칼리도는 산화중화적정법으로 분석하였다.

Na⁺, Ca²⁺, Mg²⁺, SiO₂는 유도결합쌍 플라즈마 원자방 출분광분석기(Shimadzu 모델 ICPS-1000 III, ICP-AES),

Fig. 1. Geological map and location of observation wells in the study area.

K⁺, Fe²⁺는 원자흡광분광분석기(Unicam model 989 Flame AAS and Flameless AAS)으로 분석하였으며 분석수행은 한국기초과학지원연구원이다. SO₄²⁻, Cl⁻, NO₃⁻, F⁻는 이 온크로마토그래피(IC, Dionex 320i)로 분석하였으며 분석 수행은 대전대학교이다. HCO₃⁻ 및 CO₃²⁻은 현장에서 측 정된 알칼리도와 pH를 이용하여 이를 환산하여 결정하였 다. 모든 시료에 대해서 이온 평형도는 ±5% 내외로서, 분석치의 신뢰도가 확보되었다.

산소동위원소 조성은 H₂O-CO₂ 평형법을 활용하여 한 국기초과학지원연구원의 안정동위원소 질량분석기(Stable Isotope Ratio Mass Spectrometer)(영국 GV Instruments 사, 모델 Isoprime)와 한국원자력연구원의 안정동위원소 질량분석기(VG SIRA II)를 이용하여 분석하였다. 실험실 표준시료를 반복 분석한 자료의 분석 재현성은 ±0.1‰ 이내이다. 또한 수소안정동위원소 분석은 PyrOH (EuroVector사, continuous flow 전처리장치)를 이용하여 물 시료를 Cr(EuroVector사, Max Chrome)과 반응시켜 수소를 발생시켜 한국원자력연구원의 질량분석기(Isoprime, GV instruments, UK)로 분석하였다. 분석오차는 ±0.7‰ 이다.

3.2. 주성분분석

연구지역의 지하수 진화환경 및 지하수 수절 성분의 기 원을 규명하기 위해서 주성분 분석(Principal component analysis) 방법을 적용하였다. 주성분 분석기법은 분석 대 상 변수 간의 관련성을 파악하여 변수들에 내포된 의미를 규명하는 방법이다(Mumford et al., 2007). 추출 모델은 1 이상의 고유값(eigenvalue)을 선택하고, 각 요인들에 대 한 분산을 최대화하도록 Varimax 직각회전방식을 이용하

J. Soil Groundwater Environ. Vol. 22(3), p. 10~17, 2017

여 직교변환을 수행한다(Jöreskoget al., 1976). 주성분분 석을 통하여 지하 매질 차이에 따른 지하수 화학 조성의 해석 및 인위적인 오염의 영향 여부 등의 평가에 활용되 고 있다(Hamm et al., 2006). 통계분석을 수행하기 위해서 SAS ver 9.1.3 통계 프로그램을 이용하였다(SAS, 1995).

4. 결과 및 고찰

4.1. 수리지질특성

연구지역의 수리지질 특성을 규명하고자 총 10개 시추 공(KB-1~KB-3, KB-7, KB-9~KB11, KB-13~KB-15) 수 행된 수압시험 결과를 활용하였다(Lee et al., 2014). KB-3, KB-13들은 시추공전체 심도에 수리전도도의 중앙 값이 1.00×10⁻⁷ m/s 이상이나 KB-2, KB-7, KB-9, KB-10, KB-11, KB-14, KB-15은 전체 심도에 대한 수리전 도도 중앙값이 1.00×10⁻⁷ m/s 이하로 분석된다. 이는 연 구지역의 수리지질 특성이 지표 공간마다 상이함을 반영 하며, 결국에는 공간적인 지하수 수질 변동에도 영향을 미 친다(Lee et al., 2014).

4.2. 무기 화학성분 분석

EC는 103~448 μS/cm(5월, 1차), 169~393 μS/cm(8월, 2차), 143~402 μS/cm(10월, 3차), 125~393 μS/cm(12월, 4차)의 범위로서, 평균값은 224 μS/cm, 242 μS/cm, 248 μS/cm, 231 μS/cm이다. 따라서, 인위적인 영향 및 해수의 영향이 없는 담수 지하수(< 500 μS/cm)를 지시한다(Hahn, 2000).

Na⁺이온 농도 범위는 각각 12.4~31.1 mg/L(1차), 14.7~33.3 mg/L(2차), 15.3~33.3 mg/L(3차), 15.0~32.4 mg/L (4차)로서, 평균값은 17.9 mg/L, 21.5 mg/L, 21.3 mg/L, 20.8 mg/L이다(Table 1). 평균값의 Na⁺이온과 상관성은 Cl⁻(0.89), NO₃⁻(0.71)과 높은 상관관계를 보이고 KB-2, KB-3, KB-15를 제외한 모든 시추공에서 조장석(Albite)과 불포화 조건을 반영하고 있다(Table 2). 이는 Na⁺이온은 염무 및 유기물 등의 외부 기원과 물-암석 반응을 통한 지질 기원을 동시에 반영한다.

Ca²⁺이온의 농도는 6.60~28.9 mg/L(1차), 6.39~32.8 mg/ L(2차), 8.97~33.3 mg/L(3차), 7.45~36.3 mg/L(4차)로서, 평균값은 15.2 mg/L, 17.4 mg/L, 17.4 mg/L, 16.7 mg/L이 다(Table 1). 평균값의 Ca²⁺이온과 상관성은 HCO₃⁻

Table 1. Basic statistics of physico-chemical components of groundwater samples

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Temp. (°C)	рН	Eh (mV)	EC	DO	Na^+	K^+	Ca ²⁺	Mg ²⁺	Al ³⁺	Fe ²⁺	Mn ²⁺	SiO ₂	Cl⁻	SO4 ²⁻	NO_3^-	F^{-}	HCO ₃
$ \begin{array}{c} 1 \text{st} & 16.2 & 7.12 & 5.76 & 224 & 2.69 & 17.9 & 2.84 & 15.2 & 4.40 & 0.137 & 0.742 & 0.141 & 41.9 & 11.7 & 20.3 & 0.20 & 0.13 & 72.8 \\ \hline \text{g} 2 \text{nd} & 16.7 & 6.81 & -9.43 & 242 & 2.42 & 21.5 & 2.95 & 17.4 & 5.44 & 0.050 & 2.561 & 0.213 & 44.7 & 11.1 & 17.9 & 0.72 & 0.05 & 99.6 \\ \hline \text{s} 3 \text{rd} & 16.2 & 6.85 & -43.7 & 248 & 1.75 & 21.3 & 3.03 & 17.4 & 5.79 & 0.017 & 3.315 & 0.204 & 49.5 & 10.4 & 18.5 & 0.20 & 0.05 & 102 \\ \hline \text{4th} & 15.8 & 6.76 & -32.0 & 231 & 1.8 & 20.8 & 2.92 & 16.7 & 5.28 & 0.317 & 0.214 & 0.286 & 29.5 & 8.66 & 16.4 & 0.22 & 0.04 & 103 \\ \hline \text{1st} & 16.2 & 7.34 & -11.8 & 195 & 1.87 & 16.0 & 2.30 & 14.3 & 3.40 & 0.013 & 0.542 & 0.133 & 40.5 & 11.0 & 18.0 & 0.00 & 0.10 & 72.7 \\ \hline \text{g} 2 \text{nd} & 16.2 & 6.94 & -11.7 & 212 & 1.64 & 19.7 & 2.64 & 15.6 & 5.20 & 0.033 & 0.511 & 0.146 & 45.2 & 11.4 & 12.2 & 0.00 & 0.05 & 96.3 \\ \hline \text{ard} & 16.1 & 6.70 & -40.7 & 229 & 1.06 & 18.2 & 2.98 & 14.6 & 5.58 & 0.014 & 1.243 & 0.147 & 51.2 & 9.25 & 12.1 & 0.00 & 0.05 & 96.3 \\ \hline \text{ard} & 16.1 & 6.70 & -40.7 & 229 & 1.06 & 18.2 & 2.98 & 14.6 & 5.58 & 0.014 & 1.243 & 0.147 & 51.2 & 9.25 & 12.1 & 0.00 & 0.05 & 92.8 \\ \hline \text{ard} & 15.6 & 6.65 & -41.1 & 214 & 1.7 & 18.4 & 2.96 & 12.7 & 4.19 & 0.035 & 0.003 & 0.203 & 26.4 & 7.58 & 12.2 & 0.00 & 0.05 & 92.8 \\ \hline \text{ard} & 1.33 & 1.00 & 30.1 & 73.0 & 2.44 & 6.79 & 1.51 & 8.29 & 3.24 & 0.073 & 5.848 & 0.173 & 10.2 & 4.03 & 16.4 & 1.90 & 0.05 & 27.4 \\ \hline \text{ard} & 1.33 & 1.00 & 30.1 & 73.0 & 2.44 & 6.79 & 1.51 & 8.29 & 3.24 & 0.073 & 5.848 & 0.173 & 10.2 & 4.03 & 16.4 & 1.90 & 0.05 & 27.4 \\ \hline \text{ard} & 1.21 & 0.98 & 35.1 & 89.0 & 1.59 & 6.58 & 1.22 & 8.68 & 3.46 & 0.014 & 6.225 & 0.193 & 12.4 & 4.46 & 16.2 & 0.43 & 0.02 & 30.0 \\ \hline \text{ath} & 1.24 & 0.76 & 46.9 & 73.3 & 1.62 & 6.24 & 1.06 & 9.52 & 2.90 & 0.932 & 0.720 & 0.290 & 13.7 & 5.25 & 16.4 & 0.46 & 0.03 & 29.6 \\ \hline \text{ard} & 1.81 & 18.6 & 8.26 & 81.4 & 448 & 10.6 & 31.1 & 7.00 & 28.9 & 11.8 & 1.360 & 2.458 & 0.310 & 60.5 & 23.3 & 60.0 & 0.80 & 0.50 & 115 \\ \hline \text{ard} & 1.81 & 8.64 & 3.20 & 402 & 5.65 & 33.3 & 5.91 & 33$						(μS/ cm)				mg/L										
End 2nd 16.7 6.81 -9.43 242 2.42 21.5 2.95 17.4 5.44 0.050 2.561 0.213 44.7 11.1 17.9 0.72 0.05 99.6 3rd 16.2 6.85 -43.7 248 1.75 21.3 3.03 17.4 5.79 0.017 3.15 0.204 49.5 10.4 18.5 0.20 0.05 102 4th 15.8 6.76 -32.0 231 1.8 20.8 2.92 16.7 5.28 0.317 0.214 0.28 29.5 8.66 16.4 0.22 0.04 103 1st 16.2 6.94 -11.7 212 1.64 19.7 2.64 15.6 5.20 0.033 0.511 0.146 45.2 11.4 12.2 0.00 0.05 9.63 3rd 16.1 6.70 -40.7 229 1.64 15.6 5.58 0.014 1.243 0.147 5.12 <td rowspan="4">Mean</td> <td>1st</td> <td>16.2</td> <td>7.12</td> <td>5.76</td> <td>224</td> <td>2.69</td> <td>17.9</td> <td>2.84</td> <td>15.2</td> <td>4.40</td> <td>0.137</td> <td>0.742</td> <td>0.141</td> <td>41.9</td> <td>11.7</td> <td>20.3</td> <td>0.20</td> <td>0.13</td> <td>72.8</td>	Mean	1st	16.2	7.12	5.76	224	2.69	17.9	2.84	15.2	4.40	0.137	0.742	0.141	41.9	11.7	20.3	0.20	0.13	72.8
▼ 3rd 16.2 6.85 -43.7 248 1.75 21.3 3.03 17.4 5.79 0.017 3.315 0.204 49.5 10.4 18.5 0.20 0.05 102 4th 15.8 6.76 -32.0 231 1.8 20.8 2.92 16.7 5.28 0.317 0.214 0.28 29.5 8.66 16.4 0.22 0.04 103 1st 16.2 7.34 -11.8 195 1.87 16.0 2.30 14.3 3.40 0.013 0.542 0.133 40.5 11.0 18.0 0.00 0.10 72.7 2nd 16.2 6.94 -11.7 212 1.64 19.7 2.64 15.6 5.20 0.033 0.511 0.146 45.2 11.4 12.2 0.00 0.05 9.03 4th 15.6 6.65 -41.1 214 1.7 18.4 2.96 12.7 4.19 0.035 0.008		2nd	16.7	6.81	-9.43	242	2.42	21.5	2.95	17.4	5.44	0.050	2.561	0.213	44.7	11.1	17.9	0.72	0.05	99.6
4th 15.8 6.76 -32.0 231 1.8 20.8 2.92 16.7 5.28 0.317 0.214 0.286 29.5 8.66 16.4 0.22 0.04 103 1st 16.2 7.34 -11.8 195 1.87 16.0 2.30 14.3 3.40 0.013 0.542 0.133 40.5 11.0 18.0 0.00 0.10 72.7 2nd 16.2 6.94 -11.7 212 1.64 19.7 2.64 15.6 5.20 0.033 0.511 0.146 45.2 11.4 12.2 0.00 0.05 96.3 3rd 16.1 6.70 -40.7 229 1.06 18.2 2.98 14.6 5.58 0.014 1.243 0.147 51.2 9.25 12.1 0.00 0.05 92.8 1st 1.17 0.87 46.3 90.4 2.95 5.83 1.70 8.00 3.0 0.386 0.727 0.085 9.03 5.22 16.6 0.30 0.12 30.7 3.6 3.7		3rd	16.2	6.85	-43.7	248	1.75	21.3	3.03	17.4	5.79	0.017	3.315	0.204	49.5	10.4	18.5	0.20	0.05	102
Ist 16.2 7.34 -11.8 195 1.87 16.0 2.30 14.3 3.40 0.013 0.542 0.133 40.5 11.0 18.0 0.00 0.10 72.7 2nd 16.2 6.94 -11.7 212 1.64 19.7 2.64 15.6 5.20 0.033 0.511 0.146 45.2 11.4 12.2 0.00 0.05 96.3 3rd 16.1 6.70 -40.7 229 1.06 18.2 2.98 14.6 5.58 0.014 1.243 0.147 51.2 9.25 12.1 0.00 0.05 90.3 4th 15.6 6.65 -41.1 214 1.7 18.4 2.96 12.7 4.19 0.035 0.003 0.203 26.4 7.58 12.2 0.00 0.05 27.4 2nd 1.33 1.00 30.1 73.0 2.44 6.79 1.51 8.29 3.24 0.073 5.848 0.1		4th	15.8	6.76	-32.0	231	1.8	20.8	2.92	16.7	5.28	0.317	0.214	0.286	29.5	8.66	16.4	0.22	0.04	103
Image 2nd 16.2 6.94 -11.7 212 1.64 19.7 2.64 15.6 5.20 0.033 0.511 0.146 45.2 11.4 12.2 0.00 0.05 96.3 3rd 16.1 6.70 -40.7 229 1.06 18.2 2.98 14.6 5.58 0.014 1.243 0.147 51.2 9.25 12.1 0.00 0.05 92.8 4th 15.6 6.65 -41.1 214 1.7 18.4 2.96 12.7 4.19 0.035 0.003 0.203 26.4 7.58 12.2 0.00 0.05 92.8 1st 1.17 0.87 46.3 90.4 2.95 5.83 1.70 8.00 3.0 0.386 0.727 0.085 9.03 5.22 16.6 0.30 0.12 30.7 2nd 1.21 0.98 35.1 89.0 1.59 6.58 1.22 8.68 3.46 0.014 6.25	Median	1st	16.2	7.34	-11.8	195	1.87	16.0	2.30	14.3	3.40	0.013	0.542	0.133	40.5	11.0	18.0	0.00	0.10	72.7
W 3rd 16.1 6.70 -40.7 229 1.06 18.2 2.98 14.6 5.58 0.014 1.243 0.147 51.2 9.25 12.1 0.00 0.05 92.8 4th 15.6 6.65 -41.1 214 1.7 18.4 2.96 12.7 4.19 0.035 0.003 0.203 26.4 7.58 12.2 0.00 0.05 92.8 1st 1.17 0.87 46.3 90.4 2.95 5.83 1.70 8.00 3.0 0.386 0.727 0.085 9.03 5.22 16.6 0.30 0.12 30.7 2nd 1.33 1.00 30.1 73.0 2.44 6.79 1.51 8.29 3.24 0.073 5.848 0.173 10.2 4.03 16.4 1.90 0.05 27.4 3rd 1.21 0.98 35.1 89.0 1.59 6.58 1.22 8.68 3.46 0.014 6.25 0.193 13.7 5.25 16.4 0.46 0.03 29.6 1st		2nd	16.2	6.94	-11.7	212	1.64	19.7	2.64	15.6	5.20	0.033	0.511	0.146	45.2	11.4	12.2	0.00	0.05	96.3
$ \begin{array}{c} \mbox{4th} & 15.6 & 6.65 & -41.1 & 214 & 1.7 & 18.4 & 2.96 & 12.7 & 4.19 & 0.035 & 0.003 & 0.203 & 26.4 & 7.58 & 12.2 & 0.00 & 0.05 & 92.8 \\ \hline \mbox{1st} & 1.17 & 0.87 & 46.3 & 90.4 & 2.95 & 5.83 & 1.70 & 8.00 & 3.0 & 0.386 & 0.727 & 0.085 & 9.03 & 5.22 & 16.6 & 0.30 & 0.12 & 30.7 \\ \hline \mbox{2nd} & 1.33 & 1.00 & 30.1 & 73.0 & 2.44 & 6.79 & 1.51 & 8.29 & 3.24 & 0.073 & 5.848 & 0.173 & 10.2 & 4.03 & 16.4 & 1.90 & 0.05 & 27.4 \\ \hline \mbox{3rd} & 1.21 & 0.98 & 35.1 & 89.0 & 1.59 & 6.58 & 1.22 & 8.68 & 3.46 & 0.014 & 6.225 & 0.193 & 12.4 & 4.46 & 16.2 & 0.43 & 0.02 & 30.0 \\ \hline \mbox{4th} & 1.24 & 0.76 & 46.9 & 73.3 & 1.62 & 6.24 & 1.06 & 9.52 & 2.90 & 0.932 & 0.720 & 0.290 & 13.7 & 5.25 & 16.4 & 0.46 & 0.03 & 29.6 \\ \hline \mbox{3rd} & 18.6 & 8.26 & 81.4 & 448 & 10.6 & 31.1 & 7.00 & 28.9 & 11.8 & 1.360 & 2.458 & 0.310 & 60.5 & 23.3 & 60.0 & 0.80 & 0.50 & 115 \\ \hline \mbox{3rd} & 19.4 & 8.27 & 33.7 & 393 & 8.65 & 33.3 & 5.90 & 32.8 & 12.8 & 0.271 & 20.85 & 0.574 & 62.1 & 20.3 & 60.3 & 6.67 & 0.14 & 145 \\ \hline \mbox{3rd} & 18.7 & 8.61 & 3.20 & 402 & 5.65 & 33.3 & 5.91 & 33.3 & 12.8 & 0.050 & 21.82 & 0.596 & 68.1 & 20.3 & 60.3 & 1.37 & 0.09 & 147 \\ \hline \mbox{4th} & 17.8 & 8.04 & 61.5 & 393 & 5.72 & 32.4 & 5.02 & 36.3 & 12.0 & 3.271 & 2.501 & 1.069 & 53.2 & 18.3 & 55.4 & 1.37 & 0.08 & 160 \\ \hline \mbox{1st} & 14.2 & 5.82 & -43.2 & 103 & 0.34 & 12.4 & 1.10 & 6.60 & 1.60 & N.D. & 0.002 & 0.001 & 24.2 & 4.80 & 2.00 & N.D. & N.D. & 29.4 \\ \hline \mbox{3rd} & 14.2 & 5.36 & -101 & 143 & 0.04 & 15.3 & 1.45 & 8.97 & 1.78 & 0.003 & 0.005 & 0.006 & 19.6 & 5.33 & 4.89 & N.D. & N.D. & 62.8 \\ \hline \mbox{3rd} & 14.2 & 5.36 & -101 & 143 & 0.04 & 15.3 & 1.45 & 8.97 & 1.78 & 0.003 & 0.005 & 0.006 & 19.6 & 5.33 & 4.89 & N.D. & N.D. & 62.8 \\ \hline \mbox{3rd} & 14.2 & 5.36 & -101 & 143 & 0.04 & 15.3 & 1.45 & 8.97 & 1.78 & 0.003 & 0.005 & 0.006 & 19.6 & 5.33 & 4.89 & N.D. & N.D. & 62.8 \\ \hline \ \mbox{3rd} & 14.2 & 5.36 & -101 & 143 & 0.04 & 15.3 & 1.45 & 8.97 & 1.78 & 0.003 & 0.005 & 0.006 & 19.6 & 5.33 & 4.89 & N.D. & N.D. & 62.8 \\ \hline \ \ \mbox{3rd} & 14.2 & 5.36 & -101$		3rd	16.1	6.70	-40.7	229	1.06	18.2	2.98	14.6	5.58	0.014	1.243	0.147	51.2	9.25	12.1	0.00	0.05	100
$ \begin{array}{c} 1st & 1.17 & 0.87 & 46.3 & 90.4 & 2.95 & 5.83 & 1.70 & 8.00 & 3.0 & 0.386 & 0.727 & 0.085 & 9.03 & 5.22 & 16.6 & 0.30 & 0.12 & 30.7 \\ 2nd & 1.33 & 1.00 & 30.1 & 73.0 & 2.44 & 6.79 & 1.51 & 8.29 & 3.24 & 0.073 & 5.848 & 0.173 & 10.2 & 4.03 & 16.4 & 1.90 & 0.05 & 27.4 \\ 3rd & 1.21 & 0.98 & 35.1 & 89.0 & 1.59 & 6.58 & 1.22 & 8.68 & 3.46 & 0.014 & 6.225 & 0.193 & 12.4 & 4.46 & 16.2 & 0.43 & 0.02 & 30.0 \\ 4th & 1.24 & 0.76 & 46.9 & 73.3 & 1.62 & 6.24 & 1.06 & 9.52 & 2.90 & 0.932 & 0.720 & 0.290 & 13.7 & 5.25 & 16.4 & 0.46 & 0.03 & 29.6 \\ 1st & 18.6 & 8.26 & 81.4 & 448 & 10.6 & 31.1 & 7.00 & 28.9 & 11.8 & 1.360 & 2.458 & 0.310 & 60.5 & 23.3 & 60.0 & 0.80 & 0.50 & 115 \\ 2nd & 19.4 & 8.27 & 33.7 & 393 & 8.65 & 33.3 & 5.90 & 32.8 & 12.8 & 0.271 & 20.85 & 0.574 & 62.1 & 20.3 & 60.3 & 6.67 & 0.14 & 145 \\ 3rd & 18.7 & 8.61 & 3.20 & 402 & 5.65 & 33.3 & 5.91 & 33.3 & 12.8 & 0.050 & 21.82 & 0.596 & 68.1 & 20.3 & 60.3 & 1.37 & 0.09 & 147 \\ 4th & 17.8 & 8.04 & 61.5 & 393 & 5.72 & 32.4 & 5.02 & 36.3 & 12.0 & 3.271 & 2.501 & 1.069 & 53.2 & 18.3 & 55.4 & 1.37 & 0.08 & 160 \\ 1st & 14.2 & 5.82 & -43.2 & 103 & 0.34 & 12.4 & 1.10 & 6.60 & 1.60 & N.D. & 0.002 & 0.001 & 24.2 & 4.80 & 2.00 & N.D. & N.D. & 29.4 \\ 1st & 14.2 & 5.36 & -101 & 143 & 0.04 & 15.3 & 1.45 & 8.97 & 1.78 & 0.003 & 0.005 & 0.006 & 19.6 & 5.33 & 4.89 & N.D. & N.D. & 62.8 \\ \end{array}$		4th	15.6	6.65	-41.1	214	1.7	18.4	2.96	12.7	4.19	0.035	0.003	0.203	26.4	7.58	12.2	0.00	0.05	92.8
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2nd \\ 5 \end{array} \end{array} \begin{array}{c} 1.33 \\ 1.21 \end{array} \begin{array}{c} 1.00 \\ 0.98 \end{array} \begin{array}{c} 35.1 \\ 35.1 \end{array} \begin{array}{c} 89.0 \\ 1.59 \end{array} \begin{array}{c} 2.44 \\ 6.79 \end{array} \begin{array}{c} 1.51 \\ 8.29 \end{array} \begin{array}{c} 3.24 \\ 0.073 \end{array} \begin{array}{c} 0.073 \\ 5.848 \end{array} \begin{array}{c} 0.173 \\ 0.14 \end{array} \begin{array}{c} 10.2 \\ 4.03 \end{array} \begin{array}{c} 10.4 \\ 1.90 \end{array} \begin{array}{c} 1.90 \\ 0.05 \end{array} \begin{array}{c} 27.4 \\ 0.00 \end{array} \begin{array}{c} 30.0 \\ 30.0 \end{array} \\ \begin{array}{c} 4th \\ 1.24 \end{array} \begin{array}{c} 1.21 \\ 0.98 \end{array} \begin{array}{c} 0.98 \\ 35.1 \end{array} \begin{array}{c} 89.0 \\ 1.59 \end{array} \begin{array}{c} 1.59 \\ 6.58 \end{array} \begin{array}{c} 1.22 \\ 8.68 \end{array} \begin{array}{c} 8.68 \\ 3.46 \end{array} \begin{array}{c} 0.014 \\ 6.225 \end{array} \begin{array}{c} 0.193 \\ 0.290 \end{array} \begin{array}{c} 13.7 \\ 5.25 \end{array} \begin{array}{c} 5.44 \\ 0.44 \end{array} \begin{array}{c} 0.46 \\ 0.03 \end{array} \begin{array}{c} 0.02 \\ 29.0 \end{array} \begin{array}{c} 30.0 \end{array} \\ \begin{array}{c} 29.0 \end{array} \\ \begin{array}{c} 29.0 \\ 29.0 \end{array} \begin{array}{c} 0.932 \\ 0.720 \end{array} \begin{array}{c} 0.290 \\ 0.301 \end{array} \begin{array}{c} 13.7 \\ 5.25 \end{array} \begin{array}{c} 5.44 \\ 0.44 \end{array} \begin{array}{c} 0.46 \\ 0.03 \end{array} \begin{array}{c} 0.00 \\ 29.6 \end{array} \end{array} $ \begin{array}{c} 29.0 \end{array} \\ \begin{array}{c} 29.0 \\ 29.0 \end{array} \begin{array}{c} 13.7 \\ 20.2 \end{array} \begin{array}{c} 5.25 \\ 16.4 \end{array} \begin{array}{c} 0.43 \\ 0.46 \end{array} \begin{array}{c} 0.03 \\ 0.20 \end{array} \begin{array}{c} 29.6 \end{array} \end{array} \begin{array}{c} 29.0 \\ 29.0 \end{array} \begin{array}{c} 29.0 \end{array} \end{array} \begin{array}{c} 29.0		1st	1.17	0.87	46.3	90.4	2.95	5.83	1.70	8.00	3.0	0.386	0.727	0.085	9.03	5.22	16.6	0.30	0.12	30.7
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	D.	2nd	1.33	1.00	30.1	73.0	2.44	6.79	1.51	8.29	3.24	0.073	5.848	0.173	10.2	4.03	16.4	1.90	0.05	27.4
4th 1.24 0.76 46.9 73.3 1.62 6.24 1.06 9.52 2.90 0.932 0.720 0.290 13.7 5.25 16.4 0.46 0.03 29.6 1st 18.6 8.26 81.4 448 10.6 31.1 7.00 28.9 11.8 1.360 2.458 0.310 60.5 23.3 60.0 0.80 0.50 115 2nd 19.4 8.27 33.7 393 8.65 33.3 5.90 32.8 12.8 0.271 20.85 0.574 62.1 20.3 60.3 6.67 0.14 145 3rd 18.7 8.61 3.20 402 5.65 33.3 5.91 33.3 12.8 0.050 21.82 0.596 68.1 20.3 60.3 1.37 0.09 147 4th 17.8 8.04 61.5 393 5.72 32.4 5.02 36.3 12.0 3.271 2.501 1.069 53.2 18.3 55.4 1.37 0.08 160 ist <td< td=""><td>^{2}S.</td><td>3rd</td><td>1.21</td><td>0.98</td><td>35.1</td><td>89.0</td><td>1.59</td><td>6.58</td><td>1.22</td><td>8.68</td><td>3.46</td><td>0.014</td><td>6.225</td><td>0.193</td><td>12.4</td><td>4.46</td><td>16.2</td><td>0.43</td><td>0.02</td><td>30.0</td></td<>	^{2}S .	3rd	1.21	0.98	35.1	89.0	1.59	6.58	1.22	8.68	3.46	0.014	6.225	0.193	12.4	4.46	16.2	0.43	0.02	30.0
1st 18.6 8.26 81.4 448 10.6 31.1 7.00 28.9 11.8 1.360 2.458 0.310 60.5 23.3 60.0 0.80 0.50 115 2nd 19.4 8.27 33.7 393 8.65 33.3 5.90 32.8 12.8 0.271 20.85 0.574 62.1 20.3 60.3 6.67 0.14 145 3rd 18.7 8.61 3.20 402 5.65 33.3 5.91 33.3 12.8 0.050 21.82 0.596 68.1 20.3 60.3 1.37 0.09 147 4th 17.8 8.04 61.5 393 5.72 32.4 5.02 36.3 12.0 3.271 2.501 1.069 53.2 18.3 55.4 1.37 0.08 160 1st 14.2 5.82 -43.2 103 0.34 12.4 1.10 6.60 1.60 N.D. 0.002 0.001 24.2 4.80 2.00 N.D. N.D. 29.4		4th	1.24	0.76	46.9	73.3	1.62	6.24	1.06	9.52	2.90	0.932	0.720	0.290	13.7	5.25	16.4	0.46	0.03	29.6
2nd 19.4 8.27 33.7 393 8.65 33.3 5.90 32.8 12.8 0.271 20.85 0.574 62.1 20.3 60.3 6.67 0.14 145 3rd 18.7 8.61 3.20 402 5.65 33.3 5.91 33.3 12.8 0.050 21.82 0.596 68.1 20.3 60.3 1.37 0.09 147 4th 17.8 8.04 61.5 393 5.72 32.4 5.02 36.3 12.0 3.271 2.501 1.069 53.2 18.3 55.4 1.37 0.08 160 1st 14.2 5.82 -43.2 103 0.34 12.4 1.10 6.60 1.60 N.D. 0.002 0.001 24.2 4.80 2.00 N.D. N.D. 29.4 2nd 15.1 5.36 -45.5 169 0.51 14.7 1.08 6.39 1.71 N.D. 0.014		1st	18.6	8.26	81.4	448	10.6	31.1	7.00	28.9	11.8	1.360	2.458	0.310	60.5	23.3	60.0	0.80	0.50	115
≥ 3rd 18.7 8.61 3.20 402 5.65 33.3 5.91 33.3 12.8 0.050 21.82 0.596 68.1 20.3 60.3 1.37 0.09 147 4th 17.8 8.04 61.5 393 5.72 32.4 5.02 36.3 12.0 3.271 2.501 1.069 53.2 18.3 55.4 1.37 0.08 160 1st 14.2 5.82 -43.2 103 0.34 12.4 1.10 6.60 1.60 N.D. 0.002 0.001 24.2 4.80 2.00 N.D. N.D. 29.4 ∴ 2nd 15.1 5.36 -45.5 169 0.51 14.7 1.08 6.39 1.71 N.D. 0.014 0.022 19.7 6.25 2.30 N.D. N.D. 66.7 ∴ 3rd 14.2 5.36 -101 143 0.04 15.3 1.45 8.97 1.78 0.003 0.005 0.006 19.6 5.33 4.89 N.D. N.D. 62.8	ТХ.	2nd	19.4	8.27	33.7	393	8.65	33.3	5.90	32.8	12.8	0.271	20.85	0.574	62.1	20.3	60.3	6.67	0.14	145
4th 17.8 8.04 61.5 393 5.72 32.4 5.02 36.3 12.0 3.271 2.501 1.069 53.2 18.3 55.4 1.37 0.08 160 1st 14.2 5.82 -43.2 103 0.34 12.4 1.10 6.60 1.60 N.D. 0.002 0.001 24.2 4.80 2.00 N.D. N.D. 29.4 12 2nd 15.1 5.36 -45.5 169 0.51 14.7 1.08 6.39 1.71 N.D. 0.014 0.022 19.7 6.25 2.30 N.D. N.D. 66.7 3rd 14.2 5.36 -101 143 0.04 15.3 1.45 8.97 1.78 0.003 0.005 0.006 19.6 5.33 4.89 N.D. N.D. 62.8	Ä	3rd	18.7	8.61	3.20	402	5.65	33.3	5.91	33.3	12.8	0.050	21.82	0.596	68.1	20.3	60.3	1.37	0.09	147
1st 14.2 5.82 -43.2 103 0.34 12.4 1.10 6.60 N.D. 0.002 0.001 24.2 4.80 2.00 N.D. N.D. 29.4 i 2nd 15.1 5.36 -45.5 169 0.51 14.7 1.08 6.39 1.71 N.D. 0.014 0.022 19.7 6.25 2.30 N.D. N.D. 66.7 3rd 14.2 5.36 -101 143 0.04 15.3 1.45 8.97 1.78 0.003 0.005 0.006 19.6 5.33 4.89 N.D. N.D. 62.8		4th	17.8	8.04	61.5	393	5.72	32.4	5.02	36.3	12.0	3.271	2.501	1.069	53.2	18.3	55.4	1.37	0.08	160
$ \underbrace{ : : }_{\succeq} \ \ 2nd \ \ 15.1 \ \ 5.36 \ \ -45.5 \ \ 169 \ \ 0.51 \ \ 14.7 \ \ 1.08 \ \ 6.39 \ \ 1.71 \ \ N.D. \ \ 0.014 \ \ 0.022 \ \ 19.7 \ \ 6.25 \ \ 2.30 \ \ N.D. \ \ N.D. \ \ N.D. \ \ 66.7 \ \ (5.3) \ \ 3rd \ \ 14.2 \ \ 5.36 \ \ -101 \ \ 143 \ \ 0.04 \ \ 15.3 \ \ 1.45 \ \ 8.97 \ \ 1.78 \ \ 0.003 \ \ 0.005 \ \ 0.006 \ \ 19.6 \ \ 5.33 \ \ 4.89 \ \ N.D. \ \ N.D. \ \ 62.8 \ \ 8.97 \ \ 1.78 \ \ 1.78 \ \ 0.003 \ \ 0.005 \ \ 0.006 \ \ 19.6 \ \ 5.33 \ \ 4.89 \ \ N.D. \ \ N.D. \ \ 62.8 \ \ 1.71 \ \ 1.61 \ \ \ 1.61 \ \ \ 1.61 \ \ \ 1.61 \ \ 1.61 \ \ \ $		1st	14.2	5.82	-43.2	103	0.34	12.4	1.10	6.60	1.60	N.D.	0.002	0.001	24.2	4.80	2.00	N.D.	N.D.	29.4
∑ 3rd 14.2 5.36 -101 143 0.04 15.3 1.45 8.97 1.78 0.003 0.005 0.006 19.6 5.33 4.89 N.D. N.D. 62.8	Min.	2nd	15.1	5.36	-45.5	169	0.51	14.7	1.08	6.39	1.71	N.D.	0.014	0.022	19.7	6.25	2.30	N.D.	N.D.	66.7
		3rd	14.2	5.36	-101	143	0.04	15.3	1.45	8.97	1.78	0.003	0.005	0.006	19.6	5.33	4.89	N.D.	N.D.	62.8
4th 13.6 5.88 -95.4 125 ² N.D. 15.0 1.22 7.45 1.94 0.002 N.D. 0.003 7.59 1.54 N.D. N.D. N.D. 59.1		4th	13.6	5.88	-95.4	125	² N.D.	15.0	1.22	7.45	1.94	0.002	N.D.	0.003	7.59	1.54	N.D.	N.D.	N.D.	59.1

¹S.D.: Standard deviation

²N.D.: not detected

J. Soil Groundwater Environ. Vol. 22(3), p. 10~17, 2017

Well	Albite	Anorth- ite	Anhy- drite	Calcite	Dolo- mite	Fluorite	Gypsum	SiO ₂ (a)	Talc	Kaolin- ite	Ca- mmont- morillo- nite	Illite	Gibbsite	Fe(OH) ₃ (a)
KB-1	-0.57	-2.69	-3.36	-1.95	-4.04	-4.38	-3.11	-0.53	-8.80	7.23	6.38	4.56	2.42	1.00
KB-2	1.74	1.17	-3.30	-1.38	-3.25	-3.93	-3.05	-0.26	-3.72	9.42	9.57	8.15	7.65	2.09
KB-3	0.12	-2.21	-3.12	-2.13	-4.54	-3.86	-2.87	-0.27	-7.14	7.42	7.00	5.16	2.25	0.91
KB-5	-0.42	-2.33	-3.25	0.21	0.17	-3.81	-3.01	-0.35	3.51	3.53	2.97	2.53	0.40	2.22
KB-6	-0.96	-2.83	-3.58	-1.09	-2.21	-3.95	-3.33	-0.65	-3.03	5.17	4.14	3.21	1.51	2.57
KB-7	-0.40	-1.27	-3.32	-1.57	-3.29	-3.72	-3.07	-0.35	-3.89	7.29	6.92	5.63	2.27	1.41
KB-10	-0.39	-3.00	-3.48	-2.87	-6.02	-5.01	-3.24	-0.36	-11.7	7.99	7.31	4.86	2.64	-1.08
KB-11	-2.27	-6.87	-2.38	-2.30	-4.70	-3.94	-2.14	-0.29	-10.8	4.00	2.77	0.62	0.58	-1.86
KB-13	-2.04	-2.85	-4.02	-2.70	-5.77	-4.26	-3.78	-0.42	-12.1	4.49	3.17	0.71	0.96	-0.86
KB-14	-0.27	-2.48	-3.15	-1.76	-4.16	-3.81	-2.90	-0.39	-8.50	7.15	6.53	4.80	2.23	-0.80
KB-15	0.13	-1.21	-2.83	-0.60	-1.53	-4.14	-2.59	-0.39	-0.40	5.91	5.48	4.60	1.63	3.34
KB-16-2	-0.27	-1.77	-2.44	0.12	-0.24	-3.84	-2.19	-0.40	2.45	4.23	3.70	3.20	0.80	2.21

Table 2. Result of saturation indices in groundwater samples

(0.71), Mg²⁺(0.70), SO₄²⁻(0.69), Cl⁻(0.13), NO₃⁻(-0.26) 로 나타난다. KB-2, KB-5를 제외하곤 모든 시추공에서 탄산염광물과 불포화 조건을 반영하고 있다(Table 2). 따 라서, Ca²⁺이온은 탄산염광물과 규산염광물의 물-암석 반 응을 통한 지질 기원을 나타낸다.

Mg²⁺이온의 1.60~11.8 mg/L(1차), 1.71~12.8 mg/L(2차), 1.78~12.8 mg/L(3차), 1.94~12.0 mg/L(4차)로서, 평균값은 4.40 mg/L, 5.44 mg/L, 5.79 mg/L, 5.28 mg/L이다(Table 1). 평균값 Mg²⁺이온과 상관성은 HCO₃⁻(0.78), Ca²⁺ (0.70), K⁺(0.68), SO₄²⁻(0.68), Cl⁻(0.50)로 나타난다. KB-5, KB-16-2을 제외한 모든 시추공에서 백운석 (dolomite), 활석(talc)에 대해서 불포화 조건을 반영하고 있다(Table 2). 이는 Mg²⁺이온은 탄산염광물의 물-암석 반 응을 통한 지질기원과 유기물, 염무 등의 외부 기원을 동 시에 반영한다.

K⁺이온의 농도는 1.10~7.00 mg/L(1차), 1.08~5.90 mg/ L(2차), 1.45~5.91 mg/L(3차), 1.22~5.02 mg/L(4차)로서, 평균값은 2.84 mg/L, 2.95 mg/L, 3.03 mg/L, 2.92 mg/L이 다(Table 1). 평균값의 K⁺이온과 상관성은 Mg²⁺(0.68), HCO₃⁻(0.59), SO₄²⁻(0.56), Ca²⁺(0.53), Cl⁻(0.46)로 나타 난다. K⁺이온은 물-암석 반응의 지질 기원과 염무, 유기물 등의 외부 기원을 동시에 반영한다.

중탄산(HCO₃⁻)이온의 29.4~115 mg/L(1차), 66.7~145 mg/L(2차), 62.8~147 mg/L(3차), 59.1~160 mg/L(4차)로서, 평균값은 72.8 mg/L, 99.6 mg/L, 102 mg/L, 103 mg/L이 다(Table 1). 평균값 HCO₃⁻이온과 상관성은 Mg²⁺(0.78), Ca²⁺(0.71), K⁺(0.59)로 나타난다. 방해석(calcite)와 백운석, 회장석(anorthite) 등과도 불포화 조건을 반영한다(Table 2). 따라서, HCO3 이온은 탄산염광물과 물-암석 반응을 통 한 지질 기원을 반영한다.

SO₄²⁻이온의 농도는 2.00~60.0 mg/L(1차), 2.30~60.3 mg/L(2차), 4.89~60.3 mg/L(3차), N.D.~55.4 mg/L(4차)로 서, 평균값은 20.3 mg/L, 17.9 mg/L, 18.5 mg/L, 16.4 mg/L이다(Table 1). 평균값 SO₄²⁻와 상관성은 Ca²⁺(0.69), Mg²⁺(0.68), K⁺(0.56), HCO₃⁻(0.33)로 나타난다. 석고와 경석고 광물과도 불포화 조건을 반영함에 따라, SO₄²⁻이 온은 황산염광물, 황화광물의 물-암석 반응의 지질 기원 을 반영한다.

CΓ이온의 농도는 4.80~23.3 mg/L(1차), 6.25~20.3 mg/ L(2차), 5.33~20.3 mg/L(3차), 1.54~18.3 mg/L(4차)로서, 평균값은 11.7 mg/L, 11.1 mg/L, 10.4 mg/L, 8.66 mg/L이 다(Table 1). 평균값 CΓ와 상관성은 EC(0.72), Na⁺ (0.89), SO₄²⁻(0.54), Mg²⁺(0.50)로 나타난다. 이는 CΓ이 온은 자연적인 염무와 유기물 등의 외부 기원을 반영한다.

NO3⁻이온의 농도는 N.D.~0.80 mg/L(1차), N.D.~6.67 mg/L(2차), N.D.~1.37 mg/L(3차), N.D.~1.37 mg/L(4차)로 서, 평균값은 0.20 mg/L, 0.72 mg/L, 0.20 mg/L, 0.22 mg/L이다(Table 1). 평균값 NO3⁻와 상관성은 Na⁺(0.71), Cl⁻(0.42)로 나타난다. 따라서 NO3⁻은 외부 기원을 지시하 며 부분적으로 염부의 기원도 반영되는 것으로 사료된다.

SiO₂ 이온의 농도는 24.2~60.5 mg/L(1차), 19.7~62.1 mg/L(2차), 19.6~68.1 mg/L(3차), 7.59~53.2 mg/L(4차)로 서, 평균값은 41.9 mg/L, 44.7 mg/L, 49.5 mg/L, 29.5 mg/L이다(Table 1). 비정질의 SiO₂도 불포화 조건을 반영

Fig. 2. Result of water-type of groundwater samples.

함에 따라 SiO₂는 주로 규산염광물의 물-암석 반응으로부 터 지질 기원을 반영한다.

4.3. 수질유형

연구지역의 지하수 수질 유형을 파악하기 위해서 총 4 회 조사의 모든 수질 자료를 Piper diagram에 도시한 결 과, 주로 Ca-HCO₃형과 Na-HCO₃형이 도시되며 Na-HCO₃형이 더 우세하게 나타난다(Fig. 2). 이는 연구지역 의 지하수 수질이 외부 지하수 수문순환과 심부지하수 시 스템 사이에 동적 평형상태임을 반영하는 것으로 판단된 다. 또한 양이온 이온교환 반응 정도 및 특성을 규명하기 위해 Expanded Durov diagram로 도시한 결과(Fig. 3), 양이온은 Na⁺, 음이온은 HCO₃⁻⁷가 우세하고 사각형 도표 의 1사분면에 거의 도시됨에 따라, 연구지역의 지하수 수 질은 물-암석 반응에 의한 직접적인 Ca²⁺와 Na⁺의 기 양 이온 교환 작용을 지시하나, 야외 및 실내 분석 결과를 종합해 볼 때 지하수 수질 진화는 초기 내지 중간 정도 의 특성을 나타낸다(Jeong et al., 2011).

4.4. 산소・수소안정동위원소

연구지역 지하수의 수문학적 순환 특성을 규명하기 위 해서 산소/수소 안정동위원소 분석을 실시하였다. 산소 안 정동위원소는 -9.43~-7.45‰의 범위이고 평균값은 -7.87‰ 이다. 수소의 경우, -67.6~-47.0‰의 범위이고 평균값은 -53.6‰이다. 에서 한국의 100여개 자연수 자료를 기초로 한 산소 및 수소 안정동위원소의 범위는 -11~-4‰, -80~

Fig. 3. Result of degree of evolution of groundwater samples.

Fig. 4. Stable isotope pattern of groundwater samples.

-40‰로 제시한 범위에 포함되나, 평균보다는 약간 더 무 거운 동위원소비를 지시한다(Choo and Chi, 1992).

산소, 수소 안정동위원소가 전지구적 기상수선(Global Meteoric Water Line, GMWL)을 기준으로 2개의 영역으 로 명확히 구분된다(Fig. 4). 이는 연구지역의 지하수 함 양 기작이 서로 상이함을 지시하는 것으로서, GMWL의 상부 영역에 해당되는 지하수는 해수로부터 증기 생성시 시 증발하는 동안의 급진적인 동역학적 동위원소 효과 (Kinetic isotope effect)를 반영하고 우기의 강한 증발 효 과로 인해 해수로부터 기인된 무거운 동위원소 조성의 1 차 증발로 형성된 강수의 영향을 반영한다. 한편 GMWL 하부의 경우, 강우 사건 이후 일반적인 2차 증발 효과를 반영하는 것으로서, 강우가 지하수로 침투됨에 따른 증발 효과를 반영한다(Clark and Fritz, 1997). 따라서, 본 지

Constituent	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Communality
EC	0.83	0.46	-0.26	0.00	0.07	0.97
Na^+	0.29	0.88	0.13	0.01	0.33	0.98
Ca ²⁺	0.73	-0.17	-0.51	0.21	-0.19	0.90
Mg^{2+}	0.91	-0.01	-0.19	0.04	0.10	0.87
K^+	0.85	-0.01	-0.05	-0.18	0.01	0.75
Fe^{2+}	-0.01	0.15	-0.08	-0.20	0.96	0.98
HCO ₃ ⁻	0.70	0.20	-0.53	-0.20	0.14	0.87
$\mathrm{SO_4}^{2-}$	0.78	0.05	0.01	0.48	-0.08	0.85
Cl⁻	0.57	0.67	0.26	0.18	0.34	0.98
NO ₃ ⁻	-0.24	0.95	-0.11	-0.04	-0.10	0.99
F^-	-0.22	0.05	0.89	0.08	-0.07	0.86
SiO_2	-0.01	0.02	0.08	0.95	-0.16	0.93
Eigenvalue	5.09	2.52	1.70	0.98	0.65	
Variance explained by the factor (%)	42.5	20.9	14.2	8.1	5.4	
Cumulative present of variance (%)	42.5	63.4	77.6	85.7	91.1	

Table 3. Result of principal components analysis in groundwater samples

역에서는 우기의 강한 강수 사건에 의한 빠른 강수침투가 발생하며, 직접적인 대기 증발(1차 증발 효과) 및 침투된 후 증발(2차 증발 효과)도 동시에 일어남을 반영한다. 이 는 연구지역의 수문순환 특성이 우기와 건기의 침투 특성 이 뚜렷히 구분됨을 지시한다.

4.5. 무기 화학성분의 요인분석

무기 화학성분들의 기원을 정량적으로 평가하기 위해서 주성분 분석을 실시하였다.. 연구지역의 지하수 수질은 외 부환경과 동적 평형상태를 지시하기 때문에 4회에 결쳐서 분석된 화학 성분값의 평균값을 활용하여 분석하였다. 주 성분 분석 결과(Table 3), 전체 설명율은 81.4%이며, 주 성분 1의 설명율은 52.0%, 주성분 2는 17.9%, 주성분 3 는 11.5%이다. 세 개의 주성분에 의해서 화학성분들의 분 산도를 설명하는 공통분산인자(communality)는 모든 성분 들에 대해서 0.5 이상의 값을 나타낸다. 주요 화학성분별 주성분 부화량은 강함(0.75 이상), 중간(0.75~0.50), 약함 (0.50~0.30)으로 분류하여 해석하였다(Liu et al., 2004)

주성분 1에 대해 양의 값으로 적재되는 성분은 EC, Ca²⁺, Mg²⁺, K⁺, HCO₃⁻, SO₄²⁻로서, HCO₃⁻(0.70)을 제 외하고는 0.75 이상의 강한 부화량을 나타내고 Fe²⁺, NO₃⁻, SiO₂를 제외한 모든 화학성분에서 양의 부화를 나 타낸다. 이는 주성분 1은 용존성분 총량에 의한 화학성분 들의 증가를 효과를 지시한다(Ko et al., 2005). 주성분 2에 포함되는 화학성분들은 NO₃⁻(0.95), Na⁺(0.88), Cl⁻ (0.67)가 포함되며, 인위적인 근원과과 염무의 영향을 반 영한다(Aravena et al., 1989). 주성분 3에는 F⁻(0.89)가 강한 부하량을 나타내어 물-형석 반응을 지시한다. 주성 분 4에는 SiO₂(0.95)로 강한 부하량을 지시하고 Ca²⁺와 Na⁺ 모두 양의 증가를 나타낸다. 이는 물-암석 반응을 지 시하나, Ca→Na의 양이온 교환반응이 완벽하게 진행되지 않는 초기 내지 중기 단계임을 반영하고(Ko et al., 2008) 수질유형 분석결과와도 잘 일치하는 결과를 나타낸 다. 한편, 주성분 5에는 Fe²⁺(0.96)이 강한 요인부하량을 나타낸다.

5. 결 론

본 연구는 해안지역 결정질 기반암의 수리지구화학적 분석을 통해 지하수의 물-암석 진화 특성과 지하수 수질 의 기원을 평가하였다. 총 4회에 걸쳐 채수된 지하수 분 석 결과, 지하수 수질 유형은 Na-HCO₃형과 Ca-HCO₃형 이 우세하여 Ca²⁺이온이 Na⁺이온으로의 양이온 교환 반 응이 우세하게 발생되고 있음을 지시한다. 한편, 산소/수 소 안정동위원소 분포 특성은 전지구적 기상수선을 기준 으로 2개의 영역으로 명확하게 구분되어, 직접적인 대기 증발(1차 증발 효과) 및 침투된 후 증발(2차 증발 효과) 도 동시에 일어남을 반영한다. 따라서, 연구지역 지하수 수질은 강수사건에 대한 빠른 응답특성에 따라 새롭게 충 진된 지하수는 주변 모암과 반응 시간이 상대적으로 작아 완벽히 Ca-HCO₃형이 나타나지 않고 일부 Na-HCO₃이 나타나는 것으로 사료된다. 이는 연구지역의 지하수 진화 정도가 초기 단계임의 지시한다.

지하수 수질의 기원을 판단하기 위해서 주성분 분석을

실시한 결과, EC, Ca²⁺, Mg²⁺, K⁺, HCO₃⁻, SO₄²⁻(주성 분 1), F⁻,(주성분 3), SiO₂(주성분 4), Fe²⁺(주성분 5)는 지하수내 용해되어있는 수질성분들을 나타내고, 이는 자 연적인 물-암석 결과로부터 기원되어 지하수 수질을 결정 하는 주요한 성분들임을 지시한다. 그러나, NO₃⁻, Na⁺, CI⁻(주성분 2)는 인위적인 근원과 주변 바다에서 발생된 자연적인 염무의 영향 등의 복합적으로 기원되는 화학성 분으로 판단되나, 연구지역의 지하수 수질을 결정하는 주 요한 성분에는 해당되지 않는다.

본 논문을 통하여 도출된 수리지구화학적 분석은 방사 성폐기물 처분을 위한 부지의 자연적인 기준환경 조건 설 정 및 수리화학적 부지특성모델 개념 설계시 기초적인 자 료로 활용될 수 있을 것이다. 다만, 본 연구결과는 지하수 면 직상부 지역의 지하수 수질 특성을 반영한 것으로 전 체적인 수리지구화학적 특성을 규명하는 것에는 한계성이 있다. 따라서, 향후 심도별 지하수 수질 특성이 더 규명이 된다면 부지를 대표할수 있는 정밀도가 높은 수리지구화 학적 시스템이 개발될 것으로 판단된다.

사 사

본 연구는 2014년도 산업통상자원부의 재원으로 한국 에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과 제입니다(No. 20141720100610). 또한 논문 교정 작업을 맡아준 박보배님, 이원준, 이휘준님께도 무한한 감사를 전 합니다.

References

Aravena, R., Suzuki, O., and Polastri, A., 1989, Coastal fogs and their relation to groundwater in the IV region of northern Chile, *Chem. Geol.*, **79**(1), 83-91.

Choi, B.-Y., Kim, G.-Y., Koh, Y.-K., Shin, S.-H., Yoo, S.-W., and Kim, D.-H., 2008, Geochemical characteristics of a LILW repository I. Groundwater, *J. Nucl. Fuel Cycle Waste Technol.*, **6**(4), 297-306.

Choo, S.-H. and Chi, S.-J., 1992, Stable isotope study on surface and ground waters, Korea Institute of Geoscience and Mineral Resources, 47p.

Clark, I. and Fritz, P., 1997, Environmental Isotopes in Hydrogeology, CRC Press, USA.

Gascoyne, M. and Laaksoharju, M., 2008, High-level radioactive waste disposal in Sweden: Hydrogeochemical characterisation and modelling of two potential sites, *Appli. Geoch.*, **23**(7),

J. Soil Groundwater Environ. Vol. 22(3), p. 10~17, 2017

1745-1746.

Hahn, J., 2000, Groundwater Envrionment and Pollution, Pakyoungsa, Seoul, Korea.

Hamm, S.-Y., Kim, K.S., Lee, J.-H., Cheong, J.-Y., Sung, I.H., and Jang, S., 2006, Characteristics of groundwater quality in Sasan industrial area, Busan metropolitan city, *Econ. Environ. Geol.*, **39**(6), 753-770.

Hwang, J.H., Kihm, Y.H., Kim, Y.B., and Song, K.Y., 2007, Teriary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju, *J. Geol. Soc. Korean*, **43**(4), 453-462.

IAEA (International Atomic Energy Agency), 2003, Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes, IAEA Technical Report series no. 413, 80p.

Jeong, C.H., Kim, M.S., Lee, Y.J., Han, J.S., Jang, H.G., and Jo, B.U., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon area, *J. Eng. Geol.*, **21**(2), 163-178.

Ji, S.-H., Park, K.W., Kim, K.-S., and Kim, C., 2008, Analysis of the statistical properties for the background fractures in the LILW disposal site of Korea, *J. Nucl. Fuel Cycle Waste Technol.*, **6**(4), 257-263.

Jöreskog, K.G., Klovan, J.E., and Reyment, R.A., 1976, Geological factor analysis, Elsevier Scientific Publishing Company, Amsterdam. Oxford, New York.

Kim, G.Y., Koh, Y.K., Choi, B.-Y., Shin, S.-H., and Kim, D.H., 2008, Geochemical characteristics of the Gyeongju LILW repository : II. Rock and Mineral, *J. Nucl. Fuel Cycle Waste Technol.*, **6**(4), 307-327.

Kim, K.-S., Kim, C., Bae, D.-S., Ji, S.-H., and Yoon, S-T., 2008, Hydrogeological characteristics of the LILW disposal site, *J. Nucl. Fuel Cycle Waste Technol.*, **6**(4), 245-255.

Ko, K.S., Kim, Y., Koh, D.C., Lee, K.S., Lee, S.G., Kang, C.H., Seong, H.J., and Park, W.B., 2005, Hydrogeochemical characterization of groundwater in Jeju Island using pricipal component analysis and geostatistics, *Econ. Environ. Geol.*, **38**(4), 435-450.

Ko, K.S., Ahn, H., Suk, H., Lee, J.S., and Kim H.S., 2008, Hydrogeochemistry and statistical analysis of water quality for small potable water supply system in Nonsan Area, *J. Soil Groundwater Evniron.*, **13**(6), 72-84.

Lee, J.-H., Jung, H., Cheong, J-Y., Park, J.-W., and Yun S.-T., 2014, Evaluation of groundwater quality in crystalline bedrock site for disposal of radioactive waste, *J. Nucl. Fuel Cycle Waste Technol.*, **12**(4), 275-286.

Lee, J.-H., Jung, H., Yun, S.-T., Kim, J.-Y., and Cho, S.-I, 2014, Evaluation of groundwater flow pattern at the site of crystalline rock using time series and factor analyses, *J. Soil Groundwater* Environ., 19(4), 12-22.

Lee, J.-H., Jung, H., Park, J.-W., Yoon, J.H., Cheong, J.-Y., Park, S.J., and Jun, S.-C., 2016, Evaluation of percolation rate of bedrock aquifer in coastal area, *J. Nucl. Fuel Cycle Waste Technol.*, **14**(1), 21-33.

Liu, C.W., Jang, C.S., and Liao, C.M., 2004, Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Tiwan), *Sci. Tot. Environ.*, **321**(1-3), 173-188.

Mumford, K., MacGregor, J.F., Dickson, S.E., and Frappa, R.H., 2007, Multivariate analysis of groundwater and soil data from waste disposal site, *Ground Water Monitoring and Remediation*, **27**(1), 92-102.

Oh, C.-S. and Kim, J.-M., 2008, Three-dimensional numerical simulation of groundwater flow and salt and radionuclide trasport at a low and intermediate level radioactive waste disposal site in Gyeongju, Korea, *J. Geol. Soc. Korean*, **44**(4), 489-505.

Posiva Oy., 2011, Olkiluoto Site Description 2011, Posiva 2011-02, Eurajoki, Finland, 1039p.

SAS Institute Inc., 1995, SAS Version 9.1.3 Cary, North Carolina, SAS Institute Inc.

SKB (Svensk Kärnbränslehantering AB), 2002, Hydrogeochemical site descriptive model - a strategy for the model development during site investigations, R-02-49, Stockholm, Sweden, 63p.