References
- M. Achache, A new primal-dual path-following method for convex quadratic programming, Comput. Appl. Math, 25 (2006), no. 1, 97-110.
- Z. Darvay, A weighted-path-following method for linear optimization, Stud. Univ. Babes-Bolyai Inform. 47 (2002), no. 2, 3-12.
- Z. Darvay, New interior point algorithms in linear programming, Adv. Model. Optim. 5 (2003), no. 1, 51-92.
- J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford University Press, New York, 1994.
- L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity 1 (1997), no. 4, 331-357. https://doi.org/10.1023/A:1009701824047
- L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z. 239 (2002), no. 1, 117-129. https://doi.org/10.1007/s002090100286
- G. Gu, M. Zangiabadi, and C. Roos, Full Nesterov-Todd step interior-point methods for symmetric optimization, European J. Oper. Res. 214 (2011), no. 3, 473-484. https://doi.org/10.1016/j.ejor.2011.02.022
- B. Jansen, C. Roos, T. Terlaky, and J. Vial, Long-step primal-dual target-following algorithms for linear programming, Math. Methods Oper. Res. 44 (1996), no. 1, 11-30. https://doi.org/10.1007/BF01246327
- M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, vol. 538. Springer, New York, 1991.
-
Z. Y. Luo and N. H. Xiu, Path-following interior-point algorithms for the Cartesian
$P_{\ast}{\kappa}$ -LCP over symmetric cones, Sci. China Math. 52 (2009), no. 8, 1769-1784. https://doi.org/10.1007/s11425-008-0174-0 - H. Mansouri and M. Pirhaji, A polynomial interior-point algorithm for linear complementarity problems, J. Optim. Theory Appl. 157 (2013), no. 2, 451-461. https://doi.org/10.1007/s10957-012-0195-2
- H. Mansouri, M. Zangiabadi, and M. Pirhaji, A full-Newton step O(n) infeasible interior-point algorithm for linear complementarity problems, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 545-561. https://doi.org/10.1016/j.nonrwa.2010.06.039
- F. A. Potra, An infeasible interior point method for linear complementarity problems over symmetric cones, Proceedings of the 7th International Conference of Numerical Analysis and Applied Mathematics, Rethymno, Crete, Greece, 18-22 September 2009, pp. 1403-1406. Am. Inst. of Phys., New York, 2009.
- B. K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over symmetric cones, SIAM J. Optim. 16 (2006), no. 4, 1211-1229. https://doi.org/10.1137/040606557
- C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), no. 4, 1110-1136. https://doi.org/10.1137/050623917
- S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to symmetric cones, Math. Program. 96 (2003), no. 3, 409-438. https://doi.org/10.1007/s10107-003-0380-z
- J. F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Algebra Appl. 312 (2000), no. 1-3, 135-154. https://doi.org/10.1016/S0024-3795(00)00096-3
- M. V. C. Vieira, Jordan Algebraic Approach to Symetric Optimization, PhD thesis, Delft University of Thecnology, 2007.
- G. Q. Wang and Y. Q. Bai, A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step, Appl. Math. Comput. 215 (2009), no. 3, 1047-1061. https://doi.org/10.1016/j.amc.2009.06.034
- G. Q. Wang and Y. Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization, J. Math. Anal. Appl. 353 (2009), no. 1, 339-349. https://doi.org/10.1016/j.jmaa.2008.12.016
- G. Q. Wang and Y. Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl. 154 (2012), no. 3, 966-985. https://doi.org/10.1007/s10957-012-0013-x
- G. Q. Wang and Y. Q. Bai, A class of polynomial interior-point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones, J. Optim. Theory Appl. 152 (2012), no. 3, 739-772. https://doi.org/10.1007/s10957-011-9938-8
-
G. Q. Wang and G. Lesaja, Full Nesterov-Todd step feasible interior-point method for the Cartesian
$P_{\ast}{\kappa}$ -SCLCP, Optim. Methods Softw. 28 (2013), no. 3, 600-618. https://doi.org/10.1080/10556788.2013.781600 - A. Yoshise, Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones, SIAM J. Optim. 17 (2006), no. 4, 1129-1153. https://doi.org/10.1137/04061427X
-
Y. B. Zhao and J. Han, Two interior-point methods for nonlinear
$P_{\ast}{\kappa}$ -complementaritarity problems, J. Optim. Theory Appl. 102 (1999), no. 3, 659-679. https://doi.org/10.1023/A:1022606324827