DOI QR코드

DOI QR Code

Analytical Method for Moisture Vaporization of Concrete under High Temperature

고온조건에서 콘크리트의 수분증발 해석기법

  • 이태규 (우송대학교 철도건설시스템학부)
  • Received : 2017.04.06
  • Accepted : 2017.05.31
  • Published : 2017.07.28

Abstract

Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the concrete members at fire is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

콘크리트가 화재에 노출되면 콘크리트 표면에서의 수분뿐만 아니라 콘크리트 내부에서의 수분도 수분의 평형 및 전달조건에 의하여 증발이 발생된다. 수분의 평형조건은 재료의 자기이력거동으로 표현되는 물의 증발에 대한 수착등온선 관계로 설명된다. 본 논문은 화재시 콘크리트 내부의 수분변화를 예측하고자 하는 것으로 부재 내부의 임의의 위치에서의 상대함수율을 산정하기 위하여 유한요소방식을 적용하였다. 또한 고온에서 콘크리트의 수분확산 특성치에 대해서도 모델식을 제시하였다. 이러한 해석기법의 정확성을 검증하기 위하여 실험데이터와 비교하였으며, 그 결과 수분증발로 인하여 수분이 감소되는 효과를 포함한 전반적인 부재 내부의 수분이동현상이 실제 실험데이터와 거의 유사하게 나타나는 것으로 확인되었다.

Keywords

References

  1. 강석원, 이순이, 이태호, "화재 패턴인식을 위한 학습 알고리즘," 한국콘텐츠학회 학술대회 논문집, 제7권, pp.521-525, 2009.
  2. 김홍열, 고온영역에서 고강도 콘크리트의 역학적 특성에 관한 실험적 연구, 건국대학교, 박사학위논문, 2002.
  3. 김형준, 한상훈, 최승관, "화재시 콘크리트 요소 폭렬영향성 고찰," 한국화재소방학회 논문지, 제21권, 제2호, pp.54-63, 2007.
  4. Z. P. Bazant and L. J. Najjar, "Nonlinear Water Diffusion in Nonsaturated Concrete," Materials and Construction, Vol.5, pp.3-20, 1972. https://doi.org/10.1007/BF02479073
  5. V. Baroghel-Bouny, "Water Vapour Sorption Experiments on Hardened Cementitious Materials," Cement and Concrete Research, Vol.37, pp.414-437, 2007. https://doi.org/10.1016/j.cemconres.2006.11.019
  6. 강석화, 수화반응 모델과 미세구조의 상관관계 연구, 연구보고서, 과학기술부 국책연구개발사업, 동양메이저, 2001.
  7. Z. P. Bazant, "Thermodynamics of Hindered Adsorption and Its Implications for Hardened Cement Paste and Concrete," Cement and Concrete Research, Vol.2, No.1, pp.1-16, 1972. https://doi.org/10.1016/0008-8846(72)90019-1
  8. I. M. Smith and D. V. Griffiths, Programming the Finite Element Method, 3rd Edition, John Wiley & Sons, 1998.
  9. H. Mihashi and T. Numao, "Diffusion Process and Shrinkage of Concrete at Evaluated Temperatures," Journal of JCI, Vol.10, pp.139-146, 1988.
  10. K. Sakata, "A Study on Moisture Diffusion in Drying and Drying Shrinkage of Concrete," Cement and Concrete Research, Vol.13, pp.216-224, 1983. https://doi.org/10.1016/0008-8846(83)90104-7
  11. J. K. Kim and C. S. Lee, "Moisture Diffusion of Concrete Considering Self-Desiccation at Early Ages - An Experimental Investigation," Cement and Concrete Research, Vol.29, No.12, pp.1921-1927, 1999. https://doi.org/10.1016/S0008-8846(99)00192-1
  12. 高正遠, 田村政道, 兼松學, 野口貴文, "火災加熱條件下にあはるコシクリ一トの細孔構造の變化と熱.水分移動に關する實驗的硏究," 日本建築學會 大會學術講演槪要集, pp.55-56, 2005.
  13. 고정원, 박상준, 오보환, "화재 가열 환경 하에 있는 콘크리트 중의 열 수분 이동 측정 시스템," 한국콘크리트학회지 기술기사, 제16권, 제9호, pp.58-62, 2007.
  14. ISO Technical Committee 92, Properties of Materials at High Temperatures, RILEM Committee 44, 1985.
  15. 이태규, "기화열을 고려한 콘크리트의 온도평가시스템 개발," 한국콘텐츠학회논문지, 제15권, 제12호, pp.604-611, 2015. https://doi.org/10.5392/JKCA.2015.15.12.604