베이지안 네트워크를 기반으로 한 회계법인의 속성과 감사계약체결위험간의 관계

Relationship between Characteristics of Accounting Firms and Audit Engagement Risks based on Bayesian Network

  • Sun, Eun-Jung (College of Economics and Business Administration, Department of Accounting, Hannam University) ;
  • Park, Sung-Jin (Department of Business Administration, Sungshin Women's University)
  • 투고 : 2016.12.12
  • 심사 : 2017.02.10
  • 발행 : 2017.03.31

초록

재무정보의 신뢰성을 높이는 가장 좋은 방법 중 하나는 양질의 감사품질을 유지하는 것이다. 양질의 감사품질을 유지하는 첫 번째 단계는 감사계약체결위험을 낮추는 일일 것이다. 이에 본 연구에서는 베이지안 네트워크를 활용하여 회계법인의 속성과 감사계약체결위험간의 관계에 대해 살펴보고자 한다. 이를 위해 감사계약체결위험에 영향을 미치는 최소한의 설명변수 집합인 마코브 블랭킷을 제시하였으며, 도출된 설명변수간의 관계를 바탕으로 민감도분석을 통해 회계법인의 속성과 감사계약체결위험간의 관련성을 분석하였다. 기존의 선행연구에서 사용한 회귀분석은 독립변수와 종속변수간의 선형성을 가정하였기 때문에 독립변수간의 관계를 도출하는데 한계점이 있었다. 이에 본 연구에서는 일반 베이지안 네트워크를 바탕으로 변수간의 상호의존성을 파악하고 각 변수들이 감사품질에 영향을 미치는 감사계약체결위험에 어떠한 영향을 미치는 지를 검토하였다. 본 연구의 결과는 감독기관이 감사계약체결위험을 제대로 관리하지 못한 감사인을 사전에 식별할 수 있기 때문에 감리의 효율성을 높일 수 있다. 또한 본 연구는 감독기관이 감사품질과 관련된 회계법인의 속성을 파악함으로써 감리제도의 미비점을 개선할 수 있다는 점에서 공헌점이 있을 것이다.

One of the methods of securing the reliability of accounting information is maintaining high audit quality. The first step of improving audit quality is lowering audit engagement risks. Thus, this study analyzed the relationship between the characteristics of accounting firms and audit engagement risks based on the Bayesian Network. For this, Markov Blanket, the minimum explanatory variable set, which affects audit engagement risks, was presented, and based on the drawn causal relationship, sensitivity analysis was conducted to verify the characteristics of accounting firms, which affect audit engagement risks. The existing preceding research that used multiple regression analysis presumes the linearity between explanatory variables and dependent variables, so there was a limit in drawing the relationship between explanatory variables. Therefore, this study figured out the interdependence between variables using the General Bayesian Network and examined the impact that each variable has finally on audit engagement risks that affects the audit quality. The results of this study would greatly contribute to improving the efficiency of the supervisory task by allowing a supervisory institution to identify an accounting firms that does not manage audit engagement risks properly and to improve the supervision of the accounting firms in advance. In addition, this study will be used as a reference when a supervisory institution would improve the system related to audit quality by presenting the characteristics of accounting firms related to the audit quality.

키워드

참고문헌

  1. Baesens, B., Verstraeten, G., Van den Poel, D., Michael, E. P., Kenhove, P. V., & Vanthienen, J.(2004), Bayesian network classifiers for identifying the slope of the customer life cycle of longlife customers, European Journal of Operational Research, 156(6), 508-523. https://doi.org/10.1016/S0377-2217(03)00043-2
  2. Becker, C., M. DeFond, J. Jiambalvo, and K. Subramanyam(1998), The effect of audit quality on earnings management, Contemporary Accounting Research, 15, 1-24. https://doi.org/10.1111/j.1911-3846.1998.tb00547.x
  3. Bouckaert, R.(1995), Bayesian belief networks: From construction to inference, Doctorial Dissertation, University of Wtrecht, The Netherlands.
  4. Carcello, J., D. Hermanson, and H. Fenwick Huss(2000), Going-concern opinions: The effects of partner compensation plans and client size, Auditing: A Journal of Practice & Theory, 19(1), 67-77. https://doi.org/10.2308/aud.2000.19.supplement.67
  5. Casterella, J. R., K. L. Jensen, and W. R. Kneckl(2009), Is self-regulated peer review effective at signaling audit quality?, The Accounting Review, 84(3), 713-735. https://doi.org/10.2308/accr.2009.84.3.713
  6. Cheng, J., and Greiner, R(1999), Comparing bayesian network classifiers. Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, 101-107.
  7. Choi. M. H(2012), Information content of client importance, firm's ownership structure and audit quality, Management Information Systems Revie, 31(1), 221-246. https://doi.org/10.29214/damis.2012.31.1.011
  8. Chi W. E., B. Douthett Jr., and L. L. Lisic(2012), Client importance and audit partner independence, Journal of Accounting and Public Policy, 31(3), 320-336. https://doi.org/10.1016/j.jaccpubpol.2011.08.009
  9. Clarkson, P., and D. Simunic(1994), The association between audit quality, retained ownership, and firm risk in U.S. vs. Canadian IPO markets, Journal of Accounting and Economics, 17, 207-228. https://doi.org/10.1016/0165-4101(94)90010-8
  10. Datar, S., G. Feltham, and J. Hughes(1991), The role of audits and audit quality in valuing new issues, Journal of Accounting and Economics, 14, 3-49. https://doi.org/10.1016/0167-7187(91)90057-R
  11. DeAngelo L. E.(1981), Auditor size and audit quality, Journal of Accounting and Economics, 3(3), 183-199. https://doi.org/10.1016/0165-4101(81)90002-1
  12. Friedman, N., Geiger, M., and Goldszmidt, M(1997). Bayesian network classifiers. Machine Learning, 29(2-3), 131-163. https://doi.org/10.1023/A:1007465528199
  13. Hermanson, D. R., R. W. Houston, and J. C. Rice(2007), PCAOB inspections of smaller CPA firms: Initial evidence from inspection reports, Accounting Horizons, 21, 137-152. https://doi.org/10.2308/acch.2007.21.2.137
  14. Jensen, F. V.(1996), An introduction to bayesian networks. London, UCL Press.
  15. John, G. H., and Langley, P.(1995), Estimating continous distributions in bayesian classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence(UAI), 338-345. Montreal, Quebec, Canada: Morgan Kaufmann.
  16. Kwak, Y. M., and J. J. Jung(2014), A study on the effectiveness of the audit review system, Information Systems Review, 33(5), 71-84. https://doi.org/10.29214/damis.2014.33.5.004
  17. Koller, D., and Sahami, M(1996), Toward Optimal Feature Selection. Proceedings 13th International Conf. Machine Learning, 284-292. Stanford, CA.
  18. Lee, J. E.(2011), Factors affecting auditor's quality control system and audit quality: Korean evidence based on requirements for the FSS's regulatory reviews on the auditors' quality control system, registration with the foreign regulatory authorities, and partnership profit-sharing schemes, Korean Accounting Review, 36(1), 125-181.
  19. Palmrose, Z.(1986), Audit fees and auditor size: Further evidence, Journal of Accounting Research, 24, 97-110. https://doi.org/10.2307/2490806
  20. Pearl, J.(1988), Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Francisco.
  21. Sun, E. J.(2015), Bayesian network analysis for the dynamic prediction of financial performance using corporate social responsibility activities, Management Information Systems Review, 34(5), 71-92. https://doi.org/10.29214/damis.2015.34.5.004
  22. Titman, S., and B. Trueman(1986), Information quality and the valuation of new issues, Journal of Accounting and Economics, 8, 159-172. https://doi.org/10.1016/0165-4101(86)90016-9
  23. Trompeter, G.(1994), The effect of partner compensation schemes and generally accepted accounting principles on audit partner judgment, Auditing: A Journal of Practice & Theory, 13(2), 56-68.
  24. Tsamardinos, I., Aliferis, C. F., and Statnikov, A.(2003), Time and sample efficient discovery of markov blankets and direct causal relations. The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 24-27. Washington, DC.